ﻻ يوجد ملخص باللغة العربية
We study the quantum paraelectric-ferroelectric transition near a quantum critical point, emphasizing the role of temperature as a finite size effect in time. The influence of temperature near quantum criticality may thus be likened to a temporal Casimir effect. The resulting finite-size scaling approach yields $frac{1}{T^2}$ behavior of the paraelectric susceptibility ($chi$) and the scaling form $chi(omega,T) = frac{1}{omega^2} F(frac{omega}{T})$, recovering results previously found by more technical methods. We use a Gaussian theory to illustrate how these temperature-dependences emerge from a microscopic approach; we characterize the classical-quantum crossover in $chi$, and the resulting phase diagram is presented. We also show that coupling to an acoustic phonon at low temperatures ($T$) is relevant and influences the transition line, possibly resulting in a reentrant quantum ferroelectric phase. Observable consequences of our approach for measurements on specific paraelectric materials at low temperatures are discussed.
At variance with the authors statement [L. P{a}lov{a}, P. Chandra and P. Coleman, Phys. Rev. B 79, 075101 (2009)], we show that the behavior of the universal scaling amplitude of the gap function in the phonon dispersion relation as a function of the
The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed in a fluctuating medium (quantum electromagnetic field in vacuum). A similar
I show that a nonequilibrium paraelectric to ferroelectric transition can be induced using midinfrared pulses. This relies on a quartic $lQ_{textrm{l$_z$}}^2Q_{textrm{h$_x$}}^2$ coupling between the lowest ($Q_{textrm{l$_z$}}$) and highest ($Q_{textr
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV2O4 have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does n
We give an overview of the work done during the past ten years on the Casimir interaction in electronic topological materials, our focus being solids which possess surface or bulk electronic band structures with nontrivial topologies, which can be ev