ﻻ يوجد ملخص باللغة العربية
We give an overview of the work done during the past ten years on the Casimir interaction in electronic topological materials, our focus being solids which possess surface or bulk electronic band structures with nontrivial topologies, which can be evinced through optical properties that are characterizable in terms of nonzero topological invariants. The examples we review are three-dimensional magnetic topological insulators, two-dimensional Chern insulators, graphene monolayers exhibiting the relativistic quantum Hall effect, and time reversal symmetry-broken Weyl semimetals, which are fascinating systems in the context of Casimir physics, firstly for the reason that they possess electromagnetic properties characterizable by axial vectors (because of time reversal symmetry breaking), and depending on the mutual orientation of a pair of such axial vectors, two systems can experience a repulsive Casimir-Lifshitz force even though they may be dielectrically identical. Secondly, the repulsion thus generated is potentially robust against weak disorder, as such repulsion is associated with a Hall conductivity which is topologically protected in the zero-frequency limit. Finally, the far-field low-temperature behavior of the Casimir force of such systems can provide signatures of topological quantization.
We theoretically propose a gigantic orbital Edelstein effect in topological insulators and interpret the results in terms of topological surface currents. We numerically calculate the orbital Edelstein effect for a model of a three-dimensional Chern
The emergence of topological order in graphene is in great demand for the realization of quantum spin Hall states. Recently, it is theoretically proposed that the spin textures of surface states in topological insulator can be directly transferred to
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
Three-dimensional topological insulators (TIs) have emerged as a unique state of quantum matter and generated enormous interests in condensed matter physics. The surfaces of a three dimensional (3D) TI are composed of a massless Dirac cone, which is
In the present paper, we propose a new way to classify centrosymmetric metals by studying the Zeeman effect caused by an external magnetic field described by the momentum dependent g-factor tensor on the Fermi surfaces. Nontrivial U(1) Berrys phase a