ﻻ يوجد ملخص باللغة العربية
We present ammonia observations of 193 dense cores and core candidates in the Perseus molecular cloud made using the Robert F. Byrd Green Bank Telescope. We simultaneously observed the NH3(1,1), NH3(2,2), CCS (2_1 -> 1_0) and CC34S (2_1 -> 1_0) transitions near 23 GHz for each of the targets with a spectral resolution of dv ~ 0.024 km/s. We find ammonia emission associated with nearly all of the (sub)millimeter sources as well as at several positions with no associated continuum emission. For each detection, we have measured physical properties by fitting a simple model to every spectral line simultaneously. Where appropriate, we have refined the model by accounting for low optical depths, multiple components along the line of sight and imperfect coupling to the GBT beam. For the cores in Perseus, we find a typical kinetic temperature of T=11 K, a typical column density of N(NH3)~ 10^14.5 /cm^2 and velocity dispersions ranging from sigma_v = 0.07 km/s to 0.7 km/s. However, many cores with velocity dispersions > 0.2 km/s show evidence for multiple velocity components along the line of sight.
In our SCUBA survey of Perseus, we find that the fraction of protostellar cores increases towards higher masses and the most massive cores are all protostellar. In this paper we consider the possible explanations of this apparent mass dependence in t
We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected,
We present the chemistry, temperature, and dynamical state of a sample of 193 dense cores or core candidates in the Perseus Molecular cloud and compare the properties of cores associated with young stars and clusters with those which are not. The com
We use gas temperature and velocity dispersion data from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud.
We report on a survey of h2d towards protostellar cores in low-mass star formation and quiescent regions in the Galaxy. Twenty-three out of thirty-two observed sources have significant ($gsim 5sigma$) h2d emission. Ion-molecule chemistry, which pre