ﻻ يوجد ملخص باللغة العربية
High degree of preservation of spin states during energy relaxation processes mediated by optical phonons is demonstrated in a single quantum dot. Optical-phonon resonance and relevant suppression of spin relaxation are clearly identified as dip structures in photoluminescence excitation spectra probed by the positive trion emission. The absence of continuum states makes this observation possible under the cross-circularly polarized detection with respect to a circularly polarized pumping. Consequently, distinguishably high degree of circular polarization up to ~0.85 is achieved without applying external magnetic field at the optical-phonon resonance. Rate equation analysis reveals that the spin-flip probability during energy relaxation is restricted to less than 7.5%. It is also indicated that the spin flip time of the positive trion ground state is extended by more than 3 times compared with that of neutral exciton ground state. This corresponds to the spin flip time longer than 11 ns for the positive trion ground state. The influence of nuclear polarization to the present measurements is also discussed.
Exciton spin relaxation is investigated in single epitaxially grown semiconductor quantum dots in order to test the expected spin relaxation quenching in this system. We study the polarization anisotropy of the photoluminescence signal emitted by iso
Electron-phonon ($e$-ph) interactions are key to understanding the dynamics of electrons in materials, and can be modeled accurately from first-principles. However, when electrons and holes form Coulomb-bound states (excitons), quantifying their inte
We estimate the spin relaxation rate due to spin-orbit coupling and acoustic phonon scattering in weakly-confined quantum dots with up to five interacting electrons. The Full Configuration Interaction approach is used to account for the inter-electro
We find that the optical properties of carbon nanotubes reflect remarkably strong effects of exciton-phonon coupling. Tight-binding calculations show that a significant fraction of the spectral weight of the absorption peak is transferred to a distin
We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-