ترغب بنشر مسار تعليمي؟ اضغط هنا

On the nature of the so-called generic instabilities in dissipative relativistic hydrodynamics

96   0   0.0 ( 0 )
 نشر من قبل Alfredo Sandoval-Villalbazo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that the so-called generic instabilities that appear in the framework of relativistic linear irreversible thermodynamics, describing the fluctuations of a simple fluid close to equilibrium, arise due to the coupling of heat with hydrodynamic acceleration which appears in Eckarts formalism of relativistic irreversible thermodynamics. Further, we emphasize that such behavior should be interpreted as a contradiction to the postulates of linear irreversible thermodynamics (LIT), namely a violation of Onsagers hypothesis on the regression of fluctuations, and not as fluid instabilities. Such contradictions can be avoided within a relativistic linear framework if a Meixner-like approach to the phenomenological equations is employed.



قيم البحث

اقرأ أيضاً

We address the well-posedness of the Cauchy problem corresponding to the relativistic fluid equations, when coupled with the heat-flux constitutive relation arising within the relativistic Chapman-Enskog procedure. The resulting system of equations i s shown to be non hyperbolic, by considering general perturbations over the whole set of equations written with respect to a generic time direction. The obtained eigenvalues are not purely imaginary and their real part grows without bound as the wave-number increases. Unlike Eckarts theory, this instability is not present when the time direction is aligned with the fluids direction. However, since in general the fluid velocity is not surface-forming, the instability can only be avoided in the particular case where no rotation is present.
We argue that different formulations of hydrodynamics are related to uncertainties in the definitions of local thermodynamic and hydrodynamic variables. We show that this ambiguity can be resolved by viewing different formulations of hydrodynamics as particular gauge choices which lead to the same physical behavior of the system. Using the example of bulk viscosity, we show that Bemfica-Disconzi-Noronha-Kovtun (BDNK) and Israel-Stewart hydrodynamics are particular gauge choices of this type, related by a well-defined transformation of thermodynamic and hydrodynamic variables. We argue that this gauge ambiguity is necessary to ascertain the causality of stochastic hydrodynamic evolution and conjecture that it could explain the applicability of hydrodynamics outside its expected regime of validity since far from equilibrium and close to equilibrium may be related through transformations of this type.
We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function of proper time $tau$ in the presenc e of viscous tensor and the second order relaxation time corrections for spin. Interestingly, analogous to the ordinary particle number density and chemical potential, we find that the spin density and spin chemical potential decay as $simtau^{-1}$ and $simtau^{-1/3}$, respectively. It implies that the initial spin density may not survive at the freezeout hyper-surface. These solutions can serve both to gain insight on the dynamics of spin polarization in relativistic heavy-ion collisions and as testbeds for further numerical codes.
A number of astrophysical scenarios possess and preserve an overall cylindrical symmetry also when undergoing a catastrophic and nonlinear evolution. Exploiting such a symmetry, these processes can be studied through numerical-relativity simulations at smaller computational costs and at considerably larger spatial resolutions. We here present a new flux-conservative formulation of the relativistic hydrodynamics equations in cylindrical coordinates. By rearranging those terms in the equations which are the sources of the largest numerical errors, the new formulation yields a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. We illustrate this through a series of numerical tests involving the evolution of oscillating spherical and rotating stars, as well as shock-tube tests.
The stability and causality of the Landau-Lifshitz theory and the Israel-Stewart type causal dissipative hydrodynamics are discussed. We show that the problem of acausality and instability are correlated in relativistic dissipative hydrodynamics and instability is induced by acausality. We further discuss the stability of the scaling solution. The scaling solution of the causal dissipative hydrodynamics can be unstable against inhomogeneous perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا