ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuating relativistic dissipative hydrodynamics as a gauge theory

161   0   0.0 ( 0 )
 نشر من قبل Giorgio Torrieri
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that different formulations of hydrodynamics are related to uncertainties in the definitions of local thermodynamic and hydrodynamic variables. We show that this ambiguity can be resolved by viewing different formulations of hydrodynamics as particular gauge choices which lead to the same physical behavior of the system. Using the example of bulk viscosity, we show that Bemfica-Disconzi-Noronha-Kovtun (BDNK) and Israel-Stewart hydrodynamics are particular gauge choices of this type, related by a well-defined transformation of thermodynamic and hydrodynamic variables. We argue that this gauge ambiguity is necessary to ascertain the causality of stochastic hydrodynamic evolution and conjecture that it could explain the applicability of hydrodynamics outside its expected regime of validity since far from equilibrium and close to equilibrium may be related through transformations of this type.



قيم البحث

اقرأ أيضاً

Relativistic dissipative hydrodynamics including hydrodynamic fluctuations is formulated by putting an emphasis on non-linearity and causality. As a consequence of causality, dissipative currents become dynamical variables and noises appeared in an i ntegral form of constitutive equations should be colored ones from fluctuation-dissipation relations. Nevertheless noises turn out to be white ones in its differential form when noises are assumed to be Gaussian. The obtained ifferential equations are very useful in numerical implementation of relativistic fluctuating hydrodynamics.
We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function of proper time $tau$ in the presenc e of viscous tensor and the second order relaxation time corrections for spin. Interestingly, analogous to the ordinary particle number density and chemical potential, we find that the spin density and spin chemical potential decay as $simtau^{-1}$ and $simtau^{-1/3}$, respectively. It implies that the initial spin density may not survive at the freezeout hyper-surface. These solutions can serve both to gain insight on the dynamics of spin polarization in relativistic heavy-ion collisions and as testbeds for further numerical codes.
We reformulate the Thirring model in $D$ $(2 le D < 4)$ dimensions as a gauge theory by introducing $U(1)$ hidden local symmetry (HLS) and study the dynamical mass generation of the fermion through the Schwinger-Dyson (SD) equation. By virtue of such a gauge symmetry we can greatly simplify the analysis of the SD equation by taking the most appropriate gauge (``nonlocal gauge) for the HLS. In the case of even-number of (2-component) fermions, we find the dynamical fermion mass generation as the second order phase transition at certain fermion number, which breaks the chiral symmetry but preserves the parity in (2+1) dimensions ($D=3$). In the infinite four-fermion coupling (massless gauge boson) limit in (2+1) dimensions, the result coincides with that of the (2+1)-dimensional QED, with the critical number of the 4-component fermion being $N_{rm cr} = frac{128}{3pi^{2}}$. As to the case of odd-number (2-component) fermion in (2+1) dimensions, the regularization ambiguity on the induced Chern-Simons term may be resolved by specifying the regularization so as to preserve the HLS. Our method also applies to the (1+1) dimensions, the result being consistent with the exact solution. The bosonization mechanism in (1+1) dimensional Thirring model is also reproduced in the context of dual-transformed theory for the HLS.
In an SU(N) gauge field theory, the n-point Green functions, namely, propagators and vertices, transform under the simultaneous local gauge variations of the gluon vector potential and the quark matter field in such a manner that the physical observa bles remain invariant. In this article, we derive this intrinsically non perturbative transformation law for the quark propagator within the system of covariant gauges. We carry out its explicit perturbative expansion till O(g_s^6) and, for some terms, till O(g_s^8). We study the implications of this transformation for the quark-anti-quark condensate, multiplicative renormalizability of the massless quark propagator, as well as its relation with the quark-gluon vertex at the one-loop order. Setting the color factors C_F=1 and C_A=0, Landau-Khalatnikov-Fradkin transformation for the abelian case of quantum electrodynamics is trivially recovered.
126 - Jerzy Kijowski 1994
A new approach to relativistic elasticity theory is proposed. In this approach the theory becomes a gauge--type theory, with the diffeomorphisms of the material space playing the role of gauge transformations. The dynamics of the elastic material is expressed in terms of three independent, hyperbolic, second order partial differential equations imposed on three (independent) gauge potentials. The relationship with the Carter-Quintana approach is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا