ترغب بنشر مسار تعليمي؟ اضغط هنا

Cumulative effect of Weibel-type instabilities in counterstreaming plasmas with non-Maxwellian anisotropies

159   0   0.0 ( 0 )
 نشر من قبل Marian Lazar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Counterstreaming plasma structures are widely present in laboratory experiments and astrophysical systems, and they are investigated either to prevent unstable modes arising in beam-plasma experiments or to prove the existence of large scale magnetic fields in astrophysical objects. Filamentation instability arises in a counterstreaming plasma and is responsible for the magnetization of the plasma. Filamentationally unstable mode is described by assuming that each of the counterstreaming plasmas has an isotropic Lorentzian (kappa) distribution. In this case, the filamentation instability growth rate can reach a maximum value markedly larger than that for a a plasma with a Maxwellian distribution function. This behaviour is opposite to what was observed for the Weibel instability growth rate in a bi-kappa plasma, which is always smaller than that obtained for a bi-Maxwellian plasma. The approach is further generalized for a counterstreaming plasma with a bi-kappa temperature anisotropy. In this case, the filamentation instability growth rate is enhanced by the Weibel effect when the plasma is hotter in the streaming direction, and the growth rate becomes even larger. These effects improve significantly the efficiency of the magnetic field generation, and provide further support for the potential role of the Weibel-type instabilities in the fast magnetization scenarios.



قيم البحث

اقرأ أيضاً

The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-cur rent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.
We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocitie s to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations
62 - Hong Wang , Jiulin Du , Rui Huo 2021
The collision frequencies of electron-neutral-particle in the weakly ionized complex plasmas with the non-Maxwellian velocity distributions are studied. The average collision frequencies of electron-neutral-particle in the plasmas are derived accurat ely. We find that these collision frequencies are significantly dependent on the power-law spectral indices of non-Maxwellian distribution functions and so they are generally different from the collision frequencies in the plasmas with a Maxwellian velocity distribution, which will affect the transport properties of the charged particles in the plasmas. Numerically analyses are made to show the roles of the spectral indices in the average collision frequencies respectively.
215 - V. N. Soshnikov 2008
The before described general principles and methodology of calculating electron wave propagation in homogeneous isotropic half-infinity slab of Maxwellian plasma with indefinite but in principal value sense taken integrals in characteristic equations , and the use of 2D Laplace transform method are applied to an evaluation of collision damping decrements of plane electron longitudinal and transverse waves. Damping decrement tends to infinity when the wave frequency tends to electron Langmuir frequency from above values. We considered recurrent relations for amplitudes of the overtones which form in their sum the all solution of the plasma wave non-linear equations including collision damping and quadratic (non-linear) terms. Collisionless damping at frequencies more the Langmuir one is possible only in non-Maxwellian plasmas.
86 - T. Toncian , C. Wang , E. McCary 2015
The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities p lasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the GHOST laser system at UT Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying Direct Laser Acceleration (DLA) as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, maxwellian spectra observed in earlier experiments. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا