ﻻ يوجد ملخص باللغة العربية
We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocities to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations
Ultracold neutral plasmas, formed by photoionizing laser-cooled atoms near the ionization threshold, have electron temperatures in the 1-1000 kelvin range and ion temperatures from tens of millikelvin to a few kelvin. They represent a new frontier in
We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elast
In plasmas at very low temperatures formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ~ T^(-9/2) scaling of the corresponding recombination rate with the electron temperature T. While this law is wel
The Balmer line profiles of nonradiative supernova remnant shocks provide the means to measure the post-shock proton velocity distribution. While most analyses assume a Maxwellian velocity distribution, this is unlikely to be correct. In particular,
The collision frequencies of electron-neutral-particle in the weakly ionized complex plasmas with the non-Maxwellian velocity distributions are studied. The average collision frequencies of electron-neutral-particle in the plasmas are derived accurat