ﻻ يوجد ملخص باللغة العربية
Wolf-Rayet (WR) stars are evolved massive stars with strong fast stellar winds. WR stars in our Galaxy have shown three possible sources of X-ray emission associated with their winds: shocks in the winds, colliding stellar winds, and wind-blown bubbles; however, quantitative analyses of observations are often hampered by uncertainties in distances and heavy foreground absorption. These problems are mitigated in the Magellanic Clouds (MCs), which are at known distances and have small foreground and internal extinction. We have therefore started a survey of X-ray emission associated with WR stars in the MCs using archival Chandra, ROSAT, and XMM-Newton observations. In the first paper of this series, we report the results for 70 WR stars in the MCs using 192 archival Chandra ACIS observations. X-ray emission is detected from 29 WR stars. We have investigated their X-ray spectral properties, luminosities, and temporal variability. These X-ray sources all have luminosities greater than a few times 10^32 ergs s^-1, with spectra indicative of highly absorbed emission from a thin plasma at high temperatures typical of colliding winds in WR+OB binary systems. Significant X-ray variability with periods ranging from a few hours up to ~20 days is seen associated with several WR stars. In most of these cases, the X-ray variability can be linked to the orbital motion of the WR star in a binary system, further supporting the colliding wind scenario for the origin of the X-ray emission from these stars.
Wolf-Rayet (WR) stars in the Magellanic Clouds (MCs) are ideal for studying the production of X-ray emission by their strong fast stellar winds. We have started a systematic survey for X-ray emission from WR stars in the MCs using archival Chandra, R
Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the de
Using XMM-Newton, we undertook a dedicated project to search for X-ray bright wind-wind collisions in 18 WR+OB systems. We complemented these observations with Swift and Chandra datasets, allowing for the study of two additional systems. We also impr
For the past three years we have been conducting a survey for WR stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work has resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars
Surveys of Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) have yielded a fairly complete catalog of 154 known stars. We have conducted a comprehensive, multiwavelength study of the interstellar/circumstellar environments of WR stars, using