ﻻ يوجد ملخص باللغة العربية
Surveys of Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) have yielded a fairly complete catalog of 154 known stars. We have conducted a comprehensive, multiwavelength study of the interstellar/circumstellar environments of WR stars, using the Magellanic Cloud Emission Line Survey (MCELS) images in the H$alpha$, [O III], and [S II] lines; Spitzer Space Telescope 8 and 24 $mu$m images; Blanco 4m Telescope H$alpha$ CCD images; and Australian Telescope Compact Array (ATCA) + Parkes Telescope H I data cube of the LMC. We have also examined whether the WR stars are in OB associations, classified the H II environments of WR stars, and used this information to qualitatively assess the WR stars evolutionary stages. The 30 Dor giant H II region has active star formation and hosts young massive clusters, thus we have made statistical analyses for 30 Dor and the rest of the LMC both separately and altogether. Due to the presence of massive young clusters, the WR population in 30 Dor is quite different from that from elsewhere in the LMC. We find small bubbles ($<$50 pc diameter) around $sim$12% of WR stars in the LMC, most of which are WN stars and not in OB associations. The scarcity of small WR bubbles is discussed. Spectroscopic analyses of abundances are needed to determine whether the small WR bubbles contain interstellar medium or circumstellar medium. Implications of the statistics of interstellar environments and OB associations around WR stars are discussed. Multiwavelength images of each LMC WR star are presented.
Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ t
We present 21 new radio-continuum detections at catalogued planetary nebula (PN) positions in the Large Magellanic Cloud (LMC) using all presently available data from the Australia Telescope Online Archive at 3, 6, 13 and 20 cm. Additionally, 11 prev
Mid-infrared photometry of the Wolf-Rayet star HD 38030 in the Large Magellanic Cloud from the NEOWISE-R mission show it to have undergone a dust-formation episode in 2018 and the dust to have cooled in 2019-20. New spectroscopy with the MagE spectro
Wolf-Rayet stars are amongst the rarest but also most intriguing massive stars. Their extreme stellar winds induce famous multi-wavelength circumstellar gas nebulae of various morphologies, spanning from circles and rings to bipolar shapes. This stud
Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the de