ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanostructuring lithium niobate substrates by focused ion beam milling

118   0   0.0 ( 0 )
 نشر من قبل Carole Heritier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Lacour




اسأل ChatGPT حول البحث

We report on two novel ways for patterning Lithium Niobate (LN) at submicronic scale by means of focused ion beam (FIB) bombardment. The first method consists of direct FIB milling on LiNbO3 and the second one is a combination of FIB milling on a deposited metallic layer and subsequent RIE (Reactive Ion Etching) etching. FIB images show in both cases homogeneous structures with well reproduced periodicity. These methods open the way to the fabrication of photonic crystals on LiNbO3 substrates.



قيم البحث

اقرأ أيضاً

135 - F. Lacour 2008
Nanostructures have become an attractive subject due to many applications, particularly the photonic bandgap effect observed in photonic crystals. Nevertheless, the fabrication of such structures remains a challenge because of accurate requirement co ncerning regularity, shape, hole depth etc. of the structure. E-beam lithography permits a good control of dimensional parameters but needs a 1-step fabrication process. In our work, we have to combine traditional strip-load waveguides (SiO2/SiON/SiO2 on Si) and nanostructures whose dimension are totally different. This imposes a 2-step process where waveguides and nanostructures are successively fabricated. We have at our disposal different ways to characterize these nanostructures. A direct aspect control during and after FIB treatment can be achieved by FIB and SEM imaging. Scanning near-field optical microscopy (SNOM) is currently the most effective way to test guiding confinement in such surface structures by detecting the evanescent field.
Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhi bit device performance. Here we report on direct-write milling of single crystal diamond using a focused beam of oxygen ions. Material quality is assessed by Raman and luminescence analysis, and reveals that the damage layer generated by oxygen ions can be removed by nonintrusive post-processing methods such as localised electron beam induced chemical etching.
A focused ion beam is used to mill side holes in air-silica structured fibres. By way of example, side holes are introduced in two types of air-structured fibres (1) a photonic crystal four-ring fibre and (2) a 6-hole single ring step index structured fibre.
166 - Bofeng Gao , Mengxin Ren , Wei Wu 2018
Lithium niobate is a multi-functional material, which has been regarded as one of the most promising platform for the multi-purpose optical components and photonic circuits. Targeting at the miniature optical components and systems, lithium niobate m icrostructures with feature sizes of several to hundreds of micrometers have been demonstrated, such as waveguides, photonic crystals, micro-cavities, and modulators, et al. In this paper, we presented subwavelength nanograting metasurfaces fabricated in a crystalline lithium niobate film, which hold the possibilities towards further shrinking the footprint of the photonic devices with new optical functionalities. Due to the collective lattice interactions between isolated ridge resonances, distinct transmission spectral resonances were observed, which could be tunable by varying the structural parameters. Furthermore, our metasurfaces are capable to show high efficiency transmission structural colors as a result of structural resonances and intrinsic high transparency of lithium niobate in visible spectral range. Our results would pave the way for the new types of ultracompact photonic devices based on lithium niobate.
Focused-ion-beam milling is used to fabricate nanostencil masks suitable for the fabrication of magnetic nanostructures relevant for spin transfer torque studies. Nanostencil masks are used to define the device dimensions prior to the growth of the t hin film stack. They consist of a wet etch resistant top layer and an insulator on top of a pre-patterned bottom electrode. The insulator supports a hard mask and gives rise to an undercut by its selective etching. The approach is demonstrated by fabricating current perpendicular to the plane Co/Cu/Co nanopillar junctions, which exhibit current-induced magnetization dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا