ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-driven ferroelectricity and possible antiferroelectricity in triangular lattice antiferromagnets ACrO2 (A = Cu, Ag, Li, or Na)

114   0   0.0 ( 0 )
 نشر من قبل Shinichiro Seki
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Correlation between dielectric and magnetic properties was investigated on the triangular lattice antiferromagnets ACrO2 (A= Cu, Ag, Li, or Na) showing 120-degree spiral spin structure with easy-axis anisotropy. For the A= Cu and Ag compounds with delafossite structure, ferroelectric polarization emerges upon the spiral spin order, implying the strong coupling between the ferroelectricity and spiral spin structure. On the other hand, for the A = Li and Na compounds with ordered rock salt structure, no polarization but only clear anomalies in dielectric constant can be observed upon the spiral spin order. The absence of polarization can be interpreted as the antiferroelectric state induced by the alternate stacking of Cr3+ layer with opposite spin vector chirality. These results imply that a vast range of trigonally stacked triangular-lattice systems with 120-degree spin structure can be multiferroic, irrespective of their magnetic anisotropy.



قيم البحث

اقرأ أيضاً

336 - S. Guan , G. B. Zhang , C. Liu 2020
Low-dimensional ferroelectricity and Dirac materials with protected band crossings are fascinating research subjects. Based on first-principles calculations, we predict the coexistence of spontaneous in-plane polarization and novel 2D emergent fermio ns in dynamically stable quadruple-layer (QL) XSbO$_2$ (X= Li, Na). Depending on the different polarization configurations, QL-XSbO$_2$ can exhibit unconventional inner-QL ferroelectricity and antiferroelectricity. Both ground states harbor robust ferroelectricity with enhanced spontaneous polarization of 0.56 nC/m and 0.39 nC/m for QL-LiSbO$_2$ and QL-NaSbO$_2$, respectively. Interestingly, the QL-LiSbO$_2$ possesses two other metastable ferroelectric (FE) phases, demonstrating the first 2D example with multiple FE orders. The ground FE phase can be flexibly driven into one of the two metastable FE phases and then into the antiferroelectric (AFE) phase. During this phase transition, several types of 2D fermions emerge, for instance, hourglass hybrid and type-II Weyl loops in the ground FE phase, type-II Weyl fermions in the metastable FE phase, and type-II Dirac fermions in the AFE phase. These 2D fermions are robust under spin-orbit coupling. Notably, two of these fermions, e.g., an hourglass hybrid or type-II Weyl loop, have not been observed before. Our findings identify QL-XSbO$_2$ as a unique platform for studying 2D ferroelectricity relating to 2D emergent fermions.
326 - N. Li , Q. Huang , X. Y. Yue 2019
The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value ($kappa_0/T$) in the zero-temperature limit. However, this linear in T behavior has been reported for very few QSL candidates. Here, we studied the ultralow-temperature thermal conductivity of an effective spin-1/2 triangular QSL candidate Na$_2$BaCo(PO$_4$)$_2$, which has an antiferromagnetic order at very low temperature ($T_N sim$ 148 mK), and observed a finite $kappa_0/T$ extrapolated from the data above $T_N$. Moreover, while approaching zero temperature, it exhibits series of quantum spin state transitions with applied field along the $c$ axis. These observations indicate that Na$_2$BaCo(PO$_4$)$_2$ possibly behaves as a gapless QSL with itinerant spin excitations above $T_N$ and its strong quantum spin fluctuations persist below $T_N$.
The cradle of quantum spin liquids, triangular antiferromagnets show strong proclivity to magnetic order and require deliberate tuning to stabilize a spin-liquid state. In this brief review, we juxtapose recent theoretical developments that trace the parameter regime of the spin-liquid phase, with experimental results for Co-based and Yb-based triangular antiferromagnets. Unconventional spin dynamics arising from both ordered and disordered ground states is discussed, and the notion of a geometrically perfect triangular system is scrutinized to demonstrate non-trivial imperfections that may assist magnetic frustration in stabilizing dynamic spin states with peculiar excitations.
Using a specially designed Monte Carlo algorithm with directed loops, we investigate the triangular lattice Ising antiferromagnet with coupling beyond nearest neighbour. We show that the first-order transition from the stripe state to the paramagnet can be split, giving rise to an intermediate nematic phase in which algebraic correlations coexist with a broken symmetry. Furthermore, we demonstrate the emergence of several properties of a more topological nature such as fractional edge excitations in the stripe state, the proliferation of double domain walls in the nematic phase, and the Kasteleyn transition between them. Experimental implications are briefly discussed.
134 - A. Olariu , P. Mendels , F. Bert 2009
We report a muSR study of LiCrO2, which has a magnetic lattice made up of a stacking of triangular Heisenberg antiferromagnetic (Cr3+, S = 3/2) layers. A static magnetically ordered state is observed below the transition temperature T_N = 62 K, while the expected peak of the relaxation rate is slightly shifted downward by a few kelvins below T_N. We draw a comparison with the isostructural compound NaCrO2, where an exotic broad fluctuating regime has been observed [A. Olariu, P. Mendels, F. Bert, B. G. Ueland, P. Schiffer, R. F. Berger, and R. J. Cava, Phys. Rev. Lett. 97, 167203 (2006)] and was suggested to originate from topological excitations of the triangular lattice. Replacing Na by Li strongly narrows the exotic fluctuating regime formerly observed in NaCrO2, which we attribute to a more pronounced inter-plane coupling in LiCrO2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا