ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na$_2$BaCo(PO$_4$)$_2$

327   0   0.0 ( 0 )
 نشر من قبل X. F. Sun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value ($kappa_0/T$) in the zero-temperature limit. However, this linear in T behavior has been reported for very few QSL candidates. Here, we studied the ultralow-temperature thermal conductivity of an effective spin-1/2 triangular QSL candidate Na$_2$BaCo(PO$_4$)$_2$, which has an antiferromagnetic order at very low temperature ($T_N sim$ 148 mK), and observed a finite $kappa_0/T$ extrapolated from the data above $T_N$. Moreover, while approaching zero temperature, it exhibits series of quantum spin state transitions with applied field along the $c$ axis. These observations indicate that Na$_2$BaCo(PO$_4$)$_2$ possibly behaves as a gapless QSL with itinerant spin excitations above $T_N$ and its strong quantum spin fluctuations persist below $T_N$.



قيم البحث

اقرأ أيضاً

118 - N. Li , Q. Huang , A. Brassington 2021
We have grown single crystals of Na$_2$BaNi(PO$_4$)$_2$, a new spin-1 equilateral triangular lattice antiferromagnet (ETLAF), and performed magnetic susceptibility, specific heat and thermal conductivity measurements at ultralow temperatures. The mai n results are (i) at zero magnetic field, Na$_2$BaNi(PO$_4$)$_2$ exhibits a magnetic ordering at 430 mK with a weak ferromagnetic moment along the $c$ axis. This suggests a canted 120$^circ$ spin structure, which is in a plane including the crystallographic $c$ axis due to the existence of an easy-axis anisotropy and ferromagnetically stacked along the $c$ axis; (ii) with increasing field along the $c$ axis, a 1/3 magnetization plateau is observed which means the canted 120$^circ$ spin structure is transformed to a up up down (UUD) spin structure. With even higher fields, the UUD phase further evolves to possible V and V phases; (iii) with increasing field along the $a$ axis, the canted 120$^circ$ spin structure is possibly transformed to a umbrella phase and a V phase. Therefore, Na$_2$BaNi(PO$_4$)$_2$ is a rare example of spin-1 ETLAF with single crystalline form to exhibit easy-axis spin anisotropy and series of quantum spin state transitions.
We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic f ields up to 25 T. We show that the substantial zero-field energy gap, $Deltaapprox9.5$ K, observed in the low-temperature excitation spectrum of Cs$_2$CuBr$_4$ [Zvyagin $et~al.$, Phys. Rev. Lett. 112, 077206 (2014)], is present well above $T_N$. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below $T_N$ the high-energy spin dynamics in Cs$_2$CuBr$_4$ is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.
257 - Tao Xie , Jie Xing , S. E. Nikitin 2021
A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-latt ice antiferromagnet, CsYbSe$_2$, a member of the large QSL candidate family rare-earth chalcogenides. The elastic neutron scattering measured down to 70 mK shows that there is a short-range 120$^{circ}$ magnetic order at zero field. In the field-induced ordered states, the spin-spin correlation lengths along the $c$ axis are relatively short, although the heat capacity results indicate long-range magnetic orders at 3 T $-$ 5 T. The inelastic neutron scattering spectra evolve from highly damped continuum-like excitations at zero field to relatively sharp spin wave modes at the plateau phase. Our extensive large-cluster density-matrix renormalization group calculations with a Heisenberg triangular-lattice nearest-neighbor antiferromagnetic model reproduce the essential features of the experimental spectra, including continuum-like excitations at zero field, series of sharp magnons at the plateau phase as well as two-magnon excitations at high energy. This work presents comprehensive experimental and theoretical overview of the unconventional field-induced spin dynamics in triangular-lattice Heisenberg antiferromagnet and thus provides valuable insight into quantum many-body phenomena.
Magnetic properties and magnetic structure of the Ba$_{2}$Mn(PO$_{4}$)$_{2}$ antiferromagnet featuring frustrated zigzag chains of $S=frac{5}{2}$ Mn$^{2+}$ ions are reported based on neutron diffraction, density-functional band-structure calculations , as well as temperature- and field-dependent measurements of the magnetization and specific heat. A magnetic transition at $T_Nsimeq 5$,K marks the onset of the antiferromagnetic order with the propagation vector ${mathbf k} = (frac12, 0, frac12)$ and ordered moment of $4.33pm0.08~mu_B$/Mn$^{2+}$ at 1.5,K, pointing along the $c$ direction. Direction of the magnetic moment is chosen by the single-ion anisotropy, which is relatively weak compared to the isostructural Ni$^{2+}$ compound. Geometrical frustration has strong impact on thermodynamic properties of Ba$_2$Mn(PO$_4)_2$, but manifestations of the frustration are different from those in Ba$_2$Ni(PO$_4)_2$, where frustration by isotropic exchange couplings is minor, yet strong and competing single-ion anisotropies are present. A spin-flop transition is observed around 2.5,T. The evaluation of the magnetic structure from the ground state via the spin-flop state to the field-polarized ferromagnetic state has been revealed by a comprehensive neutron diffraction study as a function of magnetic field below $T_N$. Finally, a magnetic phase diagram in the $H-T$ plane is obtained.
Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mi xed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا