ترغب بنشر مسار تعليمي؟ اضغط هنا

W-like states of N uncoupled spins 1/2

99   0   0.0 ( 0 )
 نشر من قبل Elena Ferraro
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exact dynamics of a disordered spin star system, describing a central spin coupled to N distinguishable and non interacting spins 1/2, is reported. Exploiting their interaction with the central single spin system, we present possible conditional schemes for the generation of W-like states, as well as of well-defined angular momentum states, of the N uncoupled spins. We provide in addition a way to estimate the coupling intensity between each of the N spins and the central one. Finally the feasibility of our procedure is briefly discussed.



قيم البحث

اقرأ أيضاً

We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden bir th acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory.
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
409 - M. Menotti , B. Morrison , K. Tan 2018
We demonstrate a system composed of two resonators that are coupled solely through a nonlinear interaction, and where the linear properties of each resonator can be controlled locally. We show that this class of dynamical systems has peculiar propert ies with important consequences for the study of classical and quantum nonlinear optical phenomena. As an example we discuss the case of dual-pump spontaneous four-wave mixing.
For every NAND formula of size N, there is a bounded-error N^{1/2+o(1)}-time quantum algorithm, based on a coined quantum walk, that evaluates this formula on a black-box input. Balanced, or ``approximately balanced, NAND formulas can be evaluated in O(sqrt{N}) queries, which is optimal. It follows that the (2-o(1))-th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.
We conjecture that $W$ gravity can be interpreted as the gauge theory of $phi$ diffeomorphisms in the space of dimensionally-reduced $D=2+2$ $SU^*(infty)$ Yang-Mills instantons. These $phi$ diffeomorphisms preserve a volume-three form and are those w hich furnish the correspondence between the dimensionally-reduced Plebanski equation and the KP equation in $(1+2)$ dimensions. A supersymmetric extension furnishes super-$W$ gravity. The Super-Plebanski equation generates self-dual complexified super gravitational backgrounds (SDSG) in terms of the super-Plebanski second heavenly form. Since the latter equation yields $N=1~D=4~SDSG$ complexified backgrounds associated with the complexified-cotangent space of the Riemannian surface, $(T^*Sigma)^c$, required in the formulation of $SU^*(infty)$ complexified Self-Dual Yang-Mills theory, (SDYM ); it naturally follows that the recently constructed $D=2+2~N=4$ SDSYM theory- as the consistent background of the open $N=2$ superstring- can be embedded into the $N=1~SU^*(infty)$ complexified Self-Dual-Super-Yang-Mills (SDSYM) in $D=3+3$ dimensions. This is achieved after using a generalization of self-duality for $D>4$. We finally comment on the the plausible relationship between the geometry of $N=2$ strings and the moduli of $SU^*(infty)$ complexified SDSYM in $3+3$ dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا