ﻻ يوجد ملخص باللغة العربية
Let $(X,Y)$ be a random variable consisting of an observed feature vector $Xin mathcal{X}$ and an unobserved class label $Yin {1,2,...,L}$ with unknown joint distribution. In addition, let $mathcal{D}$ be a training data set consisting of $n$ completely observed independent copies of $(X,Y)$. Usual classification procedures provide point predictors (classifiers) $widehat{Y}(X,mathcal{D})$ of $Y$ or estimate the conditional distribution of $Y$ given $X$. In order to quantify the certainty of classifying $X$ we propose to construct for each $theta =1,2,...,L$ a p-value $pi_{theta}(X,mathcal{D})$ for the null hypothesis that $Y=theta$, treating $Y$ temporarily as a fixed parameter. In other words, the point predictor $widehat{Y}(X,mathcal{D})$ is replaced with a prediction region for $Y$ with a certain confidence. We argue that (i) this approach is advantageous over traditional approaches and (ii) any reasonable classifier can be modified to yield nonparametric p-values. We discuss issues such as optimality, single use and multiple use validity, as well as computational and graphical aspects.
Goods formula and Fishers method are frequently used for combining independent P-values. Interestingly, the equivalent of Goods formula already emerged in 1910 and mathematical expressions relevant to even more general situations have been repeatedly
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assump
We develop new approaches in multi-class settings for constructing proper scoring rules and hinge-like losses and establishing corresponding regret bounds with respect to the zero-one or cost-weighted classification loss. Our construction of losses i
We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for
We consider the problem of undirected graphical model inference. In many applications, instead of perfectly recovering the unknown graph structure, a more realistic goal is to infer some graph invariants (e.g., the maximum degree, the number of conne