ﻻ يوجد ملخص باللغة العربية
We consider the problem of undirected graphical model inference. In many applications, instead of perfectly recovering the unknown graph structure, a more realistic goal is to infer some graph invariants (e.g., the maximum degree, the number of connected subgraphs, the number of isolated nodes). In this paper, we propose a new inferential framework for testing nested multiple hypotheses and constructing confidence intervals of the unknown graph invariants under undirected graphical models. Compared to perfect graph recovery, our methods require significantly weaker conditions. This paper makes two major contributions: (i) Methodologically, for testing nested multiple hypotheses, we propose a skip-down algorithm on the whole family of monotone graph invariants (The invariants which are non-decreasing under addition of edges). We further show that the same skip-down algorithm also provides valid confidence intervals for the targeted graph invariants. (ii) Theoretically, we prove that the length of the obtained confidence intervals are optimal and adaptive to the unknown signal strength. We also prove generic lower bounds for the confidence interval length for various invariants. Numerical results on both synthetic simulations and a brain imaging dataset are provided to illustrate the usefulness of the proposed method.
The inferential model (IM) framework produces data-dependent, non-additive degrees of belief about the unknown parameter that are provably valid. The validity property guarantees, among other things, that inference procedures derived from the IM cont
We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights beco
We study distributed estimation methods under communication constraints in a distributed version of the nonparametric random design regression model. We derive minimax lower bounds and exhibit methods that attain those bounds. Moreover, we show that adaptive estimation is possible in this setting.
In data science, it is often required to estimate dependencies between different data sources. These dependencies are typically calculated using Pearsons correlation, distance correlation, and/or mutual information. However, none of these measures sa
This paper is concerned with density estimation of directional data on the sphere. We introduce a procedure based on thresholding on a new type of spherical wavelets called {it needlets}. We establish a minimax result and prove its optimality. We are