ﻻ يوجد ملخص باللغة العربية
We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 hours, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone.
We consider a one-body spin-less electron spectral problem for a resonance scattering system constructed of a quantum well weakly connected to a noncompact exterior reservoir, where the electron is free. The simplest kind of the resonance scattering
Motivated by the interest in non-relativistic quantum mechanics for determining exact solutions to the Schrodinger equation we give two potentials that are conditionally exactly solvable. The two potentials are partner potentials and we obtain that e
This work analyzes the effects of cubic nonlinearities on certain resonant scattering anomalies associated with the dissolution of an embedded eigenvalue of a linear scattering system. These sharp peak-dip anomalies in the frequency domain are often
We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A probl
In a previous paper [{it J. Phys. A: Math. Theor.} {bf 40} (2007) 11105], we constructed a class of coherent states for a polynomially deformed $su(2)$ algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed