ﻻ يوجد ملخص باللغة العربية
A cohomology theory for multiplications and comultiplications of Frobenius algebras is developed in low dimensions in analogy with Hochschild cohomology of bialgebras based on deformation theory. Concrete computations are provided for key examples. Skein theoretic constructions give rise to solutions to the Yang-Baxter equation using multiplications and comultiplications of Frobenius algebras, and 2-cocycles are used to obtain deformations of R-matrices thus obtained.
In this paper we discuss and characterize several set-theoretic solutions of the Yang-Baxter equation obtained using skew lattices, an algebraic structure that has not yet been related to the Yang-Baxter equation. Such solutions are degenerate in gen
We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector
In this paper, the different operator forms of classical Yang-Baxter equation are given in the tensor expression through a unified algebraic method. It is closely related to left-symmetric algebras which play an important role in many fields in mathe
Several aspects of relations between braces and non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation are discussed and many consequences are derived. In particular, for each positive integer $n$ a finite square-free multiperm
We define total Frobenius-Schur indicator for each object in a spherical fusion category $C$ as a certain canonical sum of its higher indicators. The total indicators are invariants of spherical fusion categories. If $C$ is the representation categor