ترغب بنشر مسار تعليمي؟ اضغط هنا

Modified KdV hierarchy : Lax pair representation and bi-Hamiltonian structure

478   0   0.0 ( 0 )
 نشر من قبل Binoy Talukdar None
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider equations in the modified KdV (mKdV) hierarchy and make use of the Miura transformation to construct expressions for their Lax pair. We derive a Lagrangian-based approach to study the bi-Hamiltonian structure of the mKdV equations. We also show that the complex modified KdV (cmKdV) equation follows from the action principle to have a Lagrangian representation. This representation not only provides a basis to write the cmKdV equation in the canonical form endowed with an appropriate Poisson structure but also help us construct a semianalytical solution of it. The solution obtained by us may serve as a useful guide for purely numerical routines which are currently being used to solve the cmKdV eqution.



قيم البحث

اقرأ أيضاً

We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct results for conserved densities and Hamiltonian operators. The Lagrangian formulation, via Noethers theorem, provides a method to make the relation between symmetries and conserved quantities more precise. We have exploited this fact to study the variational symmetries of the dispersionless KdV equation.
246 - Andrei K. Svinin 2015
We consider two infinite classes of ordinary difference equations admitting Lax pair representation. Discrete equations in these classes are parameterized by two integers $kgeq 0$ and $sgeq k+1$. We describe the first integrals for these two classes in terms of special discrete polynomials. We show an equivalence of two difference equations belonged to different classes corresponding to the same pair $(k, s)$. We show that solution spaces $mathcal{N}^k_s$ of different ordinary difference equations with fixed value of $s+k$ are organized in chain of inclusions.
118 - Yuqin Yao , Yunbo Zeng 2008
We show that the KdV6 equation recently studied in [1,2] is equivalent to the Rosochatius deformation of KdV equation with self-consistent sources (RD-KdVESCS) recently presented in [9]. The $t$-type bi-Hamiltonian formalism of KdV6 equation (RD-KdVE SCS) is constructed by taking $x$ as evolution parameter. Some new solutions of KdV6 equation, such as soliton, positon and negaton solution, are presented.
This is the third in a series of papers attempting to describe a uniform geometric framework in which many integrable systems can be placed. A soliton hierarchy can be constructed from a splitting of an infinite dimensional group $L$ as positive and negative subgroups L_+, L_- and a commuting sequence in the Lie algebra of L_+. Given f in L_-, there is a formal inverse scattering solution u_f of the hierarchy. When there is a 2 co-cycle that vanishes on both subalgebras of L_+ and L_-, Wilson constructed for each f in L_- a tau function tau_f for the hierarchy. In this third paper, we prove the following results for the nxn KdV hierarchy: (1) The second partials of ln(tau_f) are differential polynomials of the formal inverse scattering solution u_f. Moreover, u_f can be recovered from the second partials of ln(tau_f). (2) The natural Virasoro action on ln(tau_f) constructed in the second paper is given by partial differential operators in ln(tau_f). (3) There is a bijection between phase spaces of the nxn KdV hierarchy and the Gelfand-Dickey (GD_n) hierarchy on the space of order n linear differential operators on the line so that the flows in these two hierarchies correspond under the bijection. (4) Our Virasoro action on the nxn KdV hierarchy is constructed from a simple Virasoro action on the negative group. We show that it corresponds to the known Virasoro action on the GD_n hierarchy under the bijection.
118 - Yong-Qiang Bai , Yan-Jun LV 2014
Hirotas bilinear approach is a very effective method to construct solutions for soliton systems. In terms of this method, the nonlinear equations can be transformed into linear equations, and can be solved by using perturbation method. In this paper, we study the bilinear Boussinesq equation and obtain its bilinear B{a}cklund transformation. Starting from this bilinear B{a}cklund transformation, we also derive its Lax pair and test its integrability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا