ﻻ يوجد ملخص باللغة العربية
The quantum adiabatic theorem states that if a quantum system starts in an eigenstate of the Hamiltonian, and this Hamiltonian varies sufficiently slowly, the system stays in this eigenstate. We investigate experimentally the conditions that must be fulfilled for this theorem to hold. We show that the traditional adiabatic condition as well as some conditions that were recently suggested are either not sufficient or not necessary. Experimental evidence is presented by a simple experiment using nuclear spins.
A discretized version of the adiabatic theorem is described with the help of a rule relating a Hermitian operator to its expectation value and variance. The simple initial operator X with known ground state is transformed in a series of N small steps
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only th
In classical computing, analog approaches have sometimes appeared to be more powerful than they really are. This occurs when resources, particularly precision, are not appropriately taken into account. While the same should also hold for analog quant
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of
In these lecture notes, we review the adiabatic theorem in quantum mechanics, focusing on a recent extension to many-body systems. The role of locality is emphasized and the relation to the quasi-adiabatic flow discussed. An important application of