ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a relic X-ray jet in Cygnus A

235   0   0.0 ( 0 )
 نشر من قبل K. C. Steenbrugge
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 200 ks Chandra ACIS-I image of Cygnus A, and discuss a long linear feature seen in its counterlobe. This feature has a non-thermal spectrum and lies on the line connecting the brighter hotspot on the approaching side and the nucleus. We therefore conclude that this feature is (or was) a jet. However, the outer part of this X-ray jet does not trace the current counterjet observed in radio. No X-ray counterpart is observed on the jet side. Using light-travel time effects we conclude that this X-ray 50 kpc linear feature is a relic jet that contains enough low-energy plasma (gamma ~ 10^3) to inverse-Compton scatter cosmic microwave background photons, producing emission in the X-rays.



قيم البحث

اقرأ أيضاً

Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy s tellar wind of the companion. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, where the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic gamma-ray emission is observed. We will utilize multiwavelength observations in order to study the nature of the hypersoft state. We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in the X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and $gamma$-ray monitoring data from AGILE and Fermi. We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario where the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.
The powerful FR II radio galaxy Cygnus A exhibits primary and secondary hotspots in each lobe. A 2 Msec Chandra X-ray image of Cygnus A has revealed an approximately circular hole, with a radius of 3.9 kpc, centered on the primary hotspot in the east ern radio lobe, hotspot E. We infer the distribution of X-ray emission on our line-of-sight from an X-ray surface brightness profile of the radio lobe adjacent to the hole and use it to argue that the hole is excavated from the radio lobe. The surface brightness profile of the hole implies a depth at least 1.7 $pm$ 0.3 times greater than its projected width, requiring a minimum depth of 13.3 $pm$ 2.3 kpc. A similar hole observed in the 5 GHz VLA radio map reinforces the argument for a cavity lying within the lobe. We argue that the jet encounters the shock compressed intracluster medium at hotspot E, passing through one or more shocks as it is deflected back into the radio lobe. The orientation of Cygnus A allows the outflow from hotspot E to travel almost directly away from us, creating an elongated cavity, as observed. These results favor models for multiple hotspots in which an FR II jet is deflected at a primary hotspot, then travels onward to deposit the bulk of its power at a secondary hotspot, rather than the dentist drill model.
151 - R. E. Spencer 2013
The ejection of a relativistic jet has been observed in the luminous Galactic low mass X-ray binary Cygnus X-2. Using high resolution radio observations, a directly resolved ejection event has been discovered while the source was on the Horizontal Br anch of the Z-track. Contemporaneous radio and X-ray observations were made with the European VLBI Network at 6 cm and the Swift X-ray observatory in the 0.3 - 10 keV band. This has been difficult to achieve because of the previous inability to predict jet formation. Two sets of ~10 hr observations were spaced 12 hr apart, the jet apparently switching on during Day 1. The radio results show an unresolved core evolving into an extended jet. A preliminary value of jet velocity v/c of 0.33 +/- 0.12 was obtained, consistent with previous determinations in Galactic sources. Simultaneous radio and X-ray lightcurves are presented and the X-ray hardness ratio shows the source to be on the Horizontal Branch where jets are expected. The observations support our proposal that jet formation can in future be predicted based on X-ray intensity increases beyond a critical value.
We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state j et to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.
Aims: Probe the high-energy ($>$60 MeV) emission from the black hole X-ray binary system, Cygnus X-1, and investigate its origin. Methods: We analysed 7.5 yr of data by Fermi/LAT with the latest PASS8 software version. Results: We report the detectio n of a signal at $sim$8 $sigma$ statistical significance spatially coincident with Cygnus X-1 and a luminosity above 60 MeV of 5.5$times$10$^{33}$ erg s$^{-1}$. The signal is correlated with the hard X-ray flux: the source is observed at high energies only during the hard X-ray spectral state, when the source is known to display persistent, relativistic radio emitting jets. The energy spectrum, extending up to $sim$20 GeV without any sign of spectral break, is well fitted by a power-law function with a photon index of 2.3$pm$0.2. There is a hint of orbital flux variability, with high-energy emission mostly coming around the superior conjunction. Conclusions: We detected GeV emission from Cygnus X-1 and probed that the emission is most likely associated with the relativistic jets. The evidence of flux orbital variability points to the anisotropic inverse Compton on stellar photons as the mechanism at work, thus constraining the emission region to a distance $10^{11}-10^{13}$ cm from the black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا