ترغب بنشر مسار تعليمي؟ اضغط هنا

A weak compact jet in a soft state of Cygnus X-1

124   0   0.0 ( 0 )
 نشر من قبل Anthony Rushton Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state jet to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.



قيم البحث

اقرأ أيضاً

Results are presented from recent VLBI observations of Cygnus X-1 during X-ray spectral state changes. Using the EVN in e-VLBI mode and the VLBA with disk recording, we observed the X-ray binary at very high angular resolution and studied changes in the compact jets as the source made transitions from hard X-ray states to softer states. The radio light curves show that these transitions were accompanied by radio flaring events followed by a quenching of the radio emission, as expected from the current paradigm for disc-jet coupling in X-ray binaries. While we see structural changes in the compact jets during these transitions, there was no evidence for the expected ejection of bright, relativistically-moving jet knots. However, we find strong evidence that the jet does not switch off completely in the soft X-ray state of Cygnus X-1, such that a weak, compact jet persists during this phase of radio quenching.
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with NuSTAR. Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variabi lity, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior NuSTAR work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin, and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93<a*<0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ~10-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ~6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
We present simultaneous multi-band radio and X-ray observations of the black hole X-ray binary Cygnus X-1, taken with the Karl G. Jansky Very Large Array and the Nuclear Spectroscopic Telescope Array. With these data, we detect clear flux variability consistent with emission from a variable compact jet. To probe how the variability signal propagates down the jet flow, we perform detailed timing analyses of our data. We find that the radio jet emission shows no significant power at Fourier frequencies $fgtrsim0.03$ Hz (below $sim30$ sec timescales), and that the higher frequency radio bands (9/11 GHz) are strongly correlated over a range of timescales, displaying a roughly constant time lag with Fourier frequency of a few tens of seconds. However, in the lower frequency radio bands (2.5/3.5 GHz) we find a significant loss of coherence over the same range of timescales. Further, we detect a correlation between the X-ray/radio emission, measuring time lags between the X-ray/radio bands on the order of tens of minutes. We use these lags to solve for the compact jet speed, finding that the Cyg X-1 jet is more relativistic than usually assumed for compact jets, where $beta=0.92^{+0.03}_{-0.06}$, ($Gamma=2.59^{+0.79}_{-0.61}$). Lastly, we constrain how the jet size scale changes with frequency, finding a shallower relation ($propto u^{-0.4}$) than predicted by simple jet models ($propto u^{-1}$), and estimate a jet opening angle of $phisim0.4-1.8$ degrees. With this study, we have developed observational techniques designed to overcome the challenges of radio timing analyses and created the tools needed to connect rapid radio jet variability properties to internal jet physics.
540 - W. Cui 1996
We reported previously that for Cyg X-1 there is a settling period following the transition from hard to soft state (astro-ph/9610071). During the transiton, The low energy spectrum (below ~10 keV) varies significantly from observation to observation while the high energy portion changes little. The source reaches nominal soft-state brightness during the settling period. It can be characterized by a soft low-energy spectrum and significant low-frequency 1/f noise and white noise on the power density spectrum (PDS). The low-energy spectrum becomes even softer, and the PDS is completely dominated by the 1/f noise, when the ``true soft state is reached. In this paper, subsequent RXTE observations of Cyg X-1 in the soft state are examined, and the results confirm our earlier conclusions. Furthermore, we show the results from observations taken during a soft-to-hard transition. As expected, the white noise appears again, and accordingly, the 1/f noise becomes less dominant, similar to the settling period at the end of the hard-to-soft transition. The low-frequency 1/f noise has not been observed when Cyg X-1 is in the hard state. Therefore, it seems to be positively correlated with the disk mass accretion rate which is low in the hard state and high in the soft state. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a simple ``fluctuating corona model (astro-ph/9610071). Here we present more evidence for it.
Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorers All Sky Monitor. We are able to set broad limits on how t he mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phase 0 (defined as the time of of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass loss rate in the soft state (Mdot<2x10^{-6} Msun/yr) than the limit in the hard state (Mdot<4x10^{-6} Msun/yr). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا