ﻻ يوجد ملخص باللغة العربية
The paper studies the problem of distributed average consensus in sensor networks with quantized data and random link failures. To achieve consensus, dither (small noise) is added to the sensor states before quantization. When the quantizer range is unbounded (countable number of quantizer levels), stochastic approximation shows that consensus is asymptotically achieved with probability one and in mean square to a finite random variable. We show that the meansquared error (m.s.e.) can be made arbitrarily small by tuning the link weight sequence, at a cost of the convergence rate of the algorithm. To study dithered consensus with random links when the range of the quantizer is bounded, we establish uniform boundedness of the sample paths of the unbounded quantizer. This requires characterization of the statistical properties of the supremum taken over the sample paths of the state of the quantizer. This is accomplished by splitting the state vector of the quantizer in two components: one along the consensus subspace and the other along the subspace orthogonal to the consensus subspace. The proofs use maximal inequalities for submartingale and supermartingale sequences. From these, we derive probability bounds on the excursions of the two subsequences, from which probability bounds on the excursions of the quantizer state vector follow. The paper shows how to use these probability bounds to design the quantizer parameters and to explore tradeoffs among the number of quantizer levels, the size of the quantization steps, the desired probability of saturation, and the desired level of accuracy $epsilon$ away from consensus. Finally, the paper illustrates the quantizer design with a numerical study.
The paper studies average consensus with random topologies (intermittent links) emph{and} noisy channels. Consensus with noise in the network links leads to the bias-variance dilemma--running consensus for long reduces the bias of the final average
The paper studies distributed static parameter (vector) estimation in sensor networks with nonlinear observation models and noisy inter-sensor communication. It introduces emph{separably estimable} observation models that generalize the observability
In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communicatio
This paper investigates the problem of distributed stochastic approximation in multi-agent systems. The algorithm under study consists of two steps: a local stochastic approximation step and a diffusion step which drives the network to a consensus. T
This invited paper presents some novel ideas on how to enhance the performance of consensus algorithms in distributed wireless sensor networks, when communication costs are considered. Of particular interest are consensus algorithms that exploit the