ﻻ يوجد ملخص باللغة العربية
The paper studies average consensus with random topologies (intermittent links) emph{and} noisy channels. Consensus with noise in the network links leads to the bias-variance dilemma--running consensus for long reduces the bias of the final average estimate but increases its variance. We present two different compromises to this tradeoff: the $mathcal{A-ND}$ algorithm modifies conventional consensus by forcing the weights to satisfy a emph{persistence} condition (slowly decaying to zero); and the $mathcal{A-NC}$ algorithm where the weights are constant but consensus is run for a fixed number of iterations $hat{imath}$, then it is restarted and rerun for a total of $hat{p}$ runs, and at the end averages the final states of the $hat{p}$ runs (Monte Carlo averaging). We use controlled Markov processes and stochastic approximation arguments to prove almost sure convergence of $mathcal{A-ND}$ to the desired average (asymptotic unbiasedness) and compute explicitly the m.s.e. (variance) of the consensus limit. We show that $mathcal{A-ND}$ represents the best of both worlds--low bias and low variance--at the cost of a slow convergence rate; rescaling the weights...
The paper studies the problem of distributed average consensus in sensor networks with quantized data and random link failures. To achieve consensus, dither (small noise) is added to the sensor states before quantization. When the quantizer range is
In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communicatio
In this work, we abstract some key ingredients in previous LWE- and RLWE-based key exchange protocols, by introducing and formalizing the building tool, referred to as key consensus (KC) and its asymmetric variant AKC. KC and AKC allow two communicat
We consider the problem of sequential binary hypothesis testing with a distributed sensor network in a non-Gaussian noise environment. To this end, we present a general formulation of the Consensus + Innovations Sequential Probability Ratio Test (CIS
In this paper, we discuss a class of distributed detection algorithms which can be viewed as implementations of Bayes law in distributed settings. Some of the algorithms are proposed in the literature most recently, and others are first developed in