ترغب بنشر مسار تعليمي؟ اضغط هنا

Cost-driven weighted networks evolution

178   0   0.0 ( 0 )
 نشر من قبل Yihong Hu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by studies on airline networks we propose a general model for weighted networks in which topological growth and weight dynamics are both determined by cost adversarial mechanism. Since transportation networks are designed and operated with objectives to reduce cost, the theory of cost in micro-economics plays a critical role in the evolution. We assume vertices and edges are given cost functions according to economics of scale and diseconomics of scale (congestion effect). With different cost functions the model produces broad distribution of networks. The model reproduces key properties of real airline networks: truncated degree distributions, nonlinear strength degree correlations, hierarchy structures, and particulary the disassortative and assortative behavior observed in different airline networks. The result suggests that the interplay between economics of scale and diseconomics of scale is a key ingredient in order to understand the underlying driving factor of the real-world weighted networks.



قيم البحث

اقرأ أيضاً

172 - Yihong Hu , Daoli Zhu , Nianqu Zhu 2007
This paper presents an evolution model of weighted networks in which the structural growth and weight dynamics are driven by human behavior, i.e. passenger route choice behavior. Transportation networks grow due to peoples increasing travel demand an d the pattern of growth is determined by their route choice behavior. In airline networks passengers often transfer from a third airport instead of flying directly to the destination, which contributes to the hubs formation and finally the scale-free statistical property. In this model we assume at each time step there emerges a new node with m travel destinations. Then the new node either connects destination directly with the probability p or transfers from a third node with the probability 1-p. The analytical result shows degree and strength both obey power-law distribution with the exponent between 2.33 and 3 depending on p. The weights also obey power-law distribution. The clustering coefficient, degree assortatively coefficient and degree-strength correlation are all dependent on the probability p. This model can also be used in social networks.
282 - X.L.Li , H.Kuang , T.Song 2007
From the macroscopic viewpoint for describing the acceleration behavior of drivers, this letter presents a weighted probabilistic cellular automaton model (the WP model, for short) by introducing a kind of random acceleration probabilistic distributi on function. The fundamental diagrams, the spatio-temporal pattern are analyzed in detail. It is shown that the presented model leads to the results consistent with the empirical data rather well, nonlinear velocity-density relationship exists in lower density region, and a new kind of traffic phenomenon called neo-synchronized flow is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-synchronized flows and clarify the mechanism of this kind of traffic phenomena. In addition, the result that the time evolution of distribution of headways is displayed as a normal distribution further validates the reasonability of the neo-synchronized flow. These findings suggest that the diversity and randomicity of drivers and vehicles has indeed remarkable effect on traffic dynamics.
181 - Jiuhua Zhao , Qipeng Liu , 2014
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
We study the betweenness centrality of fractal and non-fractal scale-free network models as well as real networks. We show that the correlation between degree and betweenness centrality $C$ of nodes is much weaker in fractal network models compared t o non-fractal models. We also show that nodes of both fractal and non-fractal scale-free networks have power law betweenness centrality distribution $P(C)sim C^{-delta}$. We find that for non-fractal scale-free networks $delta = 2$, and for fractal scale-free networks $delta = 2-1/d_{B}$, where $d_{B}$ is the dimension of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical firms (N=6776), yeast (N=1458), WWW (N=2526), and a sample of Internet network at AS level (N=20566), where $N$ is the number of nodes in the largest connected component of a network. We also study the crossover phenomenon from fractal to non-fractal networks upon adding random edges to a fractal network. We show that the crossover length $ell^{*}$, separating fractal and non-fractal regimes, scales with dimension $d_{B}$ of the network as $p^{-1/d_{B}}$, where $p$ is the density of random edges added to the network. We find that the correlation between degree and betweenness centrality increases with $p$.
Based on signaling process on complex networks, a method for identification community structure is proposed. For a network with $n$ nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the ini tial signal source once to inspire the whole network by exciting its neighbors and then the source node is endowed a $n$d vector which recording the effects of signaling process. So by this process, the topological relationship of nodes on networks could be transferred into the geometrical structure of vectors in $n$d Euclidian space. Then the best partition of groups is determined by $F$-statistic and the final community structure is given by Fuzzy $C$-means clustering method (FCM). This method can detect community structure both in unweighted and weighted networks without any extra parameters. It has been applied to ad hoc networks and some real networks including Zachary Karate Club network and football team network. The results are compared with that of other approaches and the evidence indicates that the algorithm based on signaling process is effective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا