ترغب بنشر مسار تعليمي؟ اضغط هنا

New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model

274   0   0.0 ( 0 )
 نشر من قبل Xingli Li
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From the macroscopic viewpoint for describing the acceleration behavior of drivers, this letter presents a weighted probabilistic cellular automaton model (the WP model, for short) by introducing a kind of random acceleration probabilistic distribution function. The fundamental diagrams, the spatio-temporal pattern are analyzed in detail. It is shown that the presented model leads to the results consistent with the empirical data rather well, nonlinear velocity-density relationship exists in lower density region, and a new kind of traffic phenomenon called neo-synchronized flow is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-synchronized flows and clarify the mechanism of this kind of traffic phenomena. In addition, the result that the time evolution of distribution of headways is displayed as a normal distribution further validates the reasonability of the neo-synchronized flow. These findings suggest that the diversity and randomicity of drivers and vehicles has indeed remarkable effect on traffic dynamics.



قيم البحث

اقرأ أيضاً

This letter propose a new model for characterizing traffic dynamics in scale-free networks. With a replotted road map of cities with roads mapped to vertices and intersections to edges, and introducing the road capacity L and its handling ability at intersections C, the model can be applied to urban traffic system. Simulations give the overall capacity of the traffic system which is quantified by a phase transition from free flow to congestion. Moreover, we report the fundamental diagram of flow against density, in which hysteresis is found, indicating that the system is bistable in a certain range of vehicle density. In addition, the fundamental diagram is significantly different from single-lane traffic model and 2-D BML model with four states: free flow, saturated flow, bistable and jammed.
163 - Yihong Hu , Daoli Zhu , Nianqu Zhu 2007
This paper presents an evolution model of weighted networks in which the structural growth and weight dynamics are driven by human behavior, i.e. passenger route choice behavior. Transportation networks grow due to peoples increasing travel demand an d the pattern of growth is determined by their route choice behavior. In airline networks passengers often transfer from a third airport instead of flying directly to the destination, which contributes to the hubs formation and finally the scale-free statistical property. In this model we assume at each time step there emerges a new node with m travel destinations. Then the new node either connects destination directly with the probability p or transfers from a third node with the probability 1-p. The analytical result shows degree and strength both obey power-law distribution with the exponent between 2.33 and 3 depending on p. The weights also obey power-law distribution. The clustering coefficient, degree assortatively coefficient and degree-strength correlation are all dependent on the probability p. This model can also be used in social networks.
Networks representing complex systems in nature and society usually involve multiple interaction types. These types suggest essential information on the interactions between components, but not all of the existing types are usually discovered. Theref ore, detecting the undiscovered edge types is crucial for deepening our understanding of the network structure. Although previous studies have discussed the edge label detection problem, we still lack effective methods for uncovering previously-undetected edge types. Here, we develop an effective technique to detect undiscovered new edge types in networks by leveraging a novel temporal network model. Both analytical and numerical results show that the prediction accuracy of our method is perfect when the model networks time parameter approaches infinity. Furthermore, we find that when time is finite, our method is still significantly more accurate than the baseline.
In this paper, we study traffic dynamics in scale-free networks in which packets are generated with non-homogeneously selected sources and destinations, and forwarded based on the local routing strategy. We consider two situations of packet generatio n: (i) packets are more likely generated at high-degree nodes; (ii) packets are more likely generated at low-degree nodes. Similarly, we consider two situations of packet destination: (a) packets are more likely to go to high-degree nodes; (b) packets are more likely to go to low-degree nodes. Our simulations show that the network capacity and the optimal value of $alpha$ corresponding to the maximum network capacity greatly depend on the configuration of packets sources and destinations. In particular, the capacity is greatly enhanced when most packets travel from low-degree nodes to high-degree nodes.
The state of structural balance (termed also `Heider balance) of a social network is often discussed in social psychology and sociophysics. In this state, actors at network nodes classify other individuals as enemies or friends. Hence, the network co ntains two kinds of links: positive and negative. Here a new cellular automaton is designed and investigated, which mimics the time evolution towards the structural balance. The automaton is deterministic and synchronous. The medium is the triangular lattice with some fraction $f$ of links removed. We analyse the number of unbalanced triads (parameterized as `energy), the frequencies of balanced triads and correlations between them. The time evolution enhances the local correlations of balanced triads. Local configurations of unbalanced triads are found which are blinking with period of two time steps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا