ﻻ يوجد ملخص باللغة العربية
We study some properties of the Ising model in the plane of the complex (energy/temperature)-dependent variable $u=e^{-4K}$, where $K=J/(k_BT)$, for nonzero external magnetic field, $H$. Exact results are given for the phase diagram in the $u$ plane for the model in one dimension and on infinite-length quasi-one-dimensional strips. In the case of real $h=H/(k_BT)$, these results provide new insights into features of our earlier study of this case. We also consider complex $h=H/(k_BT)$ and $mu=e^{-2h}$. Calculations of complex-$u$ zeros of the partition function on sections of the square lattice are presented. For the case of imaginary $h$, i.e., $mu=e^{itheta}$, we use exact results for the quasi-1D strips together with these partition function zeros for the model in 2D to infer some properties of the resultant phase diagram in the $u$ plane. We find that in this case, the phase boundary ${cal B}_u$ contains a real line segment extending through part of the physical ferromagnetic interval $0 le u le 1$, with a right-hand endpoint $u_{rhe}$ at the temperature for which the Yang-Lee edge singularity occurs at $mu=e^{pm itheta}$. Conformal field theory arguments are used to relate the singularities at $u_{rhe}$ and the Yang-Lee edge.
We study numerically the non-equilibrium critical properties of the Ising model defined on direct products of graphs, obtained from factor graphs without phase transition (Tc = 0). On this class of product graphs, the Ising model features a finite te
A numerical study of finite temperature features of thermodynamical observables is performed for the lattice 2d Ising model. Our results support the conjecture that the Finite Size Scaling analysis employed in the study of integrable perturbation of
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the
We numerically simulate the time evolution of the Ising field theory after quenches starting from the $E_8$ integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form
Pyrochlore magnets are candidates for spin-ice behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare earth) supported by magnetothermal measurements on selected systems. By considering long ranged dipole