ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-electron bunching in transport through a QD induced by Kondo correlations

89   0   0.0 ( 0 )
 نشر من قبل Oren Zarchin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on noise measurements in a quantum dot in the presence of Kondo correlations. Close to the unitary limit, with the conductance reaching 1.8e2/h, we observed an average backscattered charge of e*~5e/3, while weakly biasing the quantum dot. This result held to bias voltages up to half the Kondo temperature. Away from the unitary limit, the charge was measured to be e as expected. These results confirm and extend the prediction by E. Sela et al. [1], that suggested that two-electron backscattering processes dominate over single-electron backscattering processes near the unitary limit, with an average backscattered charge e*~5e/3.



قيم البحث

اقرأ أيضاً

We consider a quantum dot with ${cal K}{geq} 2$ orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multi-level Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric po int is governed by a two-channel $S{=}1$ Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi-liquid. Using non-equilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.
The correlated behavior of electrons determines the structure and optical properties of molecules, semiconductor and other systems. Valuable information on these correlations is provided by measuring the response to femtosecond laser pulses, which pr obe the very short time period during which the excited particles remain correlated. The interpretation of four-wave-mixing techniques, commonly used to study the energy levels and dynamics of many-electron systems, is complicated by many competing effects and overlapping resonances. Here we propose a coherent optical technique, specifically designed to provide a background-free probe for electronic correlations in many-electron systems. The proposed signal pulse is generated only when the electrons are correlated, which gives rise to an extraordinary sensitivity. The peak pattern in two-dimensional plots, obtained by displaying the signal vs. two frequencies conjugated to two pulse delays, provides a direct visualization and specific signatures of the many-electron wavefunctions.
In two-dimensional (2D) electron systems, an off-resonant high-frequency circularly polarized electromagnetic field can induce the quasi-stationary bound electron states of repulsive scatterers. As a consequence, the resonant scattering of conduction electrons through the quasi-stationary states and the capture of conduction electrons by the states appear. The present theory describes the transport properties of 2D electron gas irradiated by a circularly polarized light, which are modified by these processes. Particularly, it is demonstrated that irradiation of 2D electron systems by the off-resonant field results in the quantum correction to conductivity of resonant kind.
We investigate thermoelectric transport through a SU(N) quantum impurity in the Kondo regime. The strong coupling fixed point theory is described by the local Fermi-liquid paradigm. Using Keldysh technique we analyse the electric current through the quantum impurity at both finite bias voltage and finite temperature drop across it. The theory of a steady state at zero-current provides a complete description of the Seebeck effect. We find pronounced non-linear effects in temperature drop at low temperatures. We illustrate the significance of the non-linearities for enhancement of thermopower by two examples of SU(4) symmetric regimes characterized by a filling factor m: i) particle-hole symmetric at m=2 and ii) particle-hole non-symmetric at m=1. We analyse the effects of potential scattering and coupling asymmetry on the transport coefficients. We discuss connections between the theory and transport experiments with coupled quantum dots and carbon nanotubes.
Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/A lGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I(V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I(V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا