ﻻ يوجد ملخص باللغة العربية
We report on noise measurements in a quantum dot in the presence of Kondo correlations. Close to the unitary limit, with the conductance reaching 1.8e2/h, we observed an average backscattered charge of e*~5e/3, while weakly biasing the quantum dot. This result held to bias voltages up to half the Kondo temperature. Away from the unitary limit, the charge was measured to be e as expected. These results confirm and extend the prediction by E. Sela et al. [1], that suggested that two-electron backscattering processes dominate over single-electron backscattering processes near the unitary limit, with an average backscattered charge e*~5e/3.
We consider a quantum dot with ${cal K}{geq} 2$ orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multi-level Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric po
The correlated behavior of electrons determines the structure and optical properties of molecules, semiconductor and other systems. Valuable information on these correlations is provided by measuring the response to femtosecond laser pulses, which pr
In two-dimensional (2D) electron systems, an off-resonant high-frequency circularly polarized electromagnetic field can induce the quasi-stationary bound electron states of repulsive scatterers. As a consequence, the resonant scattering of conduction
We investigate thermoelectric transport through a SU(N) quantum impurity in the Kondo regime. The strong coupling fixed point theory is described by the local Fermi-liquid paradigm. Using Keldysh technique we analyse the electric current through the
Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/A