ﻻ يوجد ملخص باللغة العربية
We introduce a uniform representation of general objects that captures the regularities with respect to their structure. It allows a representation of a general class of objects including geometric patterns and images in a sparse, modular, hierarchical, and recursive manner. The representation can exploit any computable regularity in objects to compactly describe them, while also being capable of representing random objects as raw data. A set of rules uniformly dictates the interpretation of the representation into raw signal, which makes it possible to ask what pattern a given raw signal contains. Also, it allows simple separation of the information that we wish to ignore from that which we measure, by using a set of maps to delineate the a priori parts of the objects, leaving only the information in the structure. Using the representation, we introduce a measure of information in general objects relative to structures defined by the set of maps. We point out that the common prescription of encoding objects by strings to use Kolmogorov complexity is meaningless when, as often is the case, the encoding is not specified in any way other than that it exists. Noting this, we define the measure directly in terms of the structures of the spaces in which the objects reside. As a result, the measure is defined relative to a set of maps that characterize the structures. It turns out that the measure is equivalent to Kolmogorov complexity when it is defined relative to the maps characterizing the structure of natural numbers. Thus, the formulation gives the larger class of objects a meaningful measure of information that generalizes Kolmogorov complexity.
Normalized information distance (NID) uses the theoretical notion of Kolmogorov complexity, which for practical purposes is approximated by the length of the compressed version of the file involved, using a real-world compression program. This practi
In the present paper, we propose the model of {it structural information learning machines} (SiLeM for short), leading to a mathematical definition of learning by merging the theories of computation and information. Our model shows that the essence o
Today, even the most compute-and-power constrained robots can measure complex, high data-rate video and LIDAR sensory streams. Often, such robots, ranging from low-power drones to space and subterranean rovers, need to transmit high-bitrate sensory d
Mutual Information (MI) plays an important role in representation learning. However, MI is unfortunately intractable in continuous and high-dimensional settings. Recent advances establish tractable and scalable MI estimators to discover useful repres
We introduce a simple logical inference structure we call a $textsf{spanoid}$ (generalizing the notion of a matroid), which captures well-studied problems in several areas. These include combinatorial geometry, algebra (arrangements of hypersurfaces