ﻻ يوجد ملخص باللغة العربية
We introduce a simple logical inference structure we call a $textsf{spanoid}$ (generalizing the notion of a matroid), which captures well-studied problems in several areas. These include combinatorial geometry, algebra (arrangements of hypersurfaces and ideals), statistical physics (bootstrap percolation) and coding theory. We initiate a thorough investigation of spanoids, from computational and structural viewpoints, focusing on parameters relevant to the applications areas above and, in particular, to questions regarding Locally Correctable Codes (LCCs). One central parameter we study is the $textsf{rank}$ of a spanoid, extending the rank of a matroid and related to the dimension of codes. This leads to one main application of our work, establishing the first known barrier to improving the nearly 20-year old bound of Katz-Trevisan (KT) on the dimension of LCCs. On the one hand, we prove that the KT bound (and its more recent refinements) holds for the much more general setting of spanoid rank. On the other hand we show that there exist (random) spanoids whose rank matches these bounds. Thus, to significantly improve the known bounds one must step out of the spanoid framework. Another parameter we explore is the $textsf{functional rank}$ of a spanoid, which captures the possibility of turning a given spanoid into an actual code. The question of the relationship between rank and functional rank is one of the main questions we raise as it may reveal new avenues for constructing new LCCs (perhaps even matching the KT bound). As a first step, we develop an entropy relaxation of functional rank to create a small constant gap and amplify it by tensoring to construct a spanoid whose functional rank is smaller than rank by a polynomial factor. This is evidence that the entropy method we develop can prove polynomially better bounds than KT-type methods on the dimension of LCCs.
We prove that 3-query linear locally correctable codes over the Reals of dimension $d$ require block length $n>d^{2+lambda}$ for some fixed, positive $lambda >0$. Geometrically, this means that if $n$ vectors in $R^d$ are such that each vector is spa
We study the singularity probability of random integer matrices. Concretely, the probability that a random $n times n$ matrix, with integer entries chosen uniformly from ${-m,ldots,m}$, is singular. This problem has been well studied in two regimes:
We give a family of counter examples showing that the two sequences of polytopes $Phi_{n,n}$ and $Psi_{n,n}$ are different. These polytopes were defined recently by S. Friedland in an attempt at a polynomial time algorithm for graph isomorphism.
Ahlswede and Katona (1977) posed the following isodiametric problem in Hamming spaces: For every $n$ and $1le Mle2^{n}$, determine the minimum average Hamming distance of binary codes with length $n$ and size $M$. Fu, Wei, and Yeung (2001) used linea
We present a nearly-linear time algorithm for counting and randomly generating simple graphs with a given degree sequence in a certain range. For degree sequence $(d_i)_{i=1}^n$ with maximum degree $d_{max}=O(m^{1/4-tau})$, our algorithm generates al