ترغب بنشر مسار تعليمي؟ اضغط هنا

Spherical functors

341   0   0.0 ( 0 )
 نشر من قبل Rina Anno
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Rina Anno




اسأل ChatGPT حول البحث

This paper has been withdrawn and replaced by arXiv:1309.5035. In this paper we describe some examples of so called spherical functors between triangulated categories, which generalize the notion of a spherical object. We also give sufficient conditions for a collection of spherical functors to yield a weak representation of the category of tangles, and prove a structure theorem for such representations under certain restrictions.



قيم البحث

اقرأ أيضاً

Given a DG-category A we introduce the bar category of modules Modbar(A). It is a DG-enhancement of the derived category D(A) of A which is isomorphic to the category of DG A-modules with A-infinity morphisms between them. However, it is defined intr insically in the language of DG-categories and requires no complex machinery or sign conventions of A-infinity categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration we develop homotopy adjunction theory for tensor functors between derived categories of DG-categories. It allows us to show in an enhanced setting that given a functor F with left and right adjoints L and R the functorial complex $FR rightarrow FRFR rightarrow FR rightarrow Id$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of F. We then write down four induced functorial Postnikov towers computing this convolution.
For two DG-categories A and B we define the notion of a spherical Morita quasi-functor A -> B. We construct its associated autoequivalences: the twist T of D(B) and the co-twist F of D(A). We give powerful sufficiency criteria for a quasi-functor to be spherical and for the twists associated to a collection of spherical quasi-functors to braid. Using the framework of DG-enhanced triangulated categories, we translate all of the above to Fourier-Mukai transforms between the derived categories of algebraic varieties. This is a broad generalisation of the results on spherical objects in [ST01] and on spherical functors in [Ann07]. In fact, this paper replaces [Ann07], which has a fatal gap in the proof of its main theorem. Though conceptually correct, the proof was impossible to fix within the framework of triangulated categories.
177 - Marek Zawadowski 2013
We characterize the category of co-semi-analytic functors and describe an action of semi-analytic functors on co-semi-analytic functors.
254 - Nguyen Tien Quang 2009
Each Gr-functor of the type $(varphi,f)$ of a Gr-category of the type $(Pi,C)$ has the obstruction be an element $overline{k}in H^3(Pi,C).$ When this obstruction vanishes, there exists a bijection between congruence classes of Gr-functors of the type $(varphi,f)$ and the cohomology group $H^2(Pi,C).$ Then the relation of Gr-category theory and the group extension problem can be established and used to prove that each Gr-category is Gr-equivalent to a strict one.
We describe an abstract 2-categorical setting to study various notions of polynomial and analytic functors and monads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا