ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial and Analytic Functors and Monads, revisited

199   0   0.0 ( 0 )
 نشر من قبل Marek Zawadowski
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an abstract 2-categorical setting to study various notions of polynomial and analytic functors and monads.



قيم البحث

اقرأ أيضاً

In this paper, we give precise mathematical form to the idea of a structure whose data and axioms are faithfully represented by a graphical calculus; some prominent examples are operads, polycategories, properads, and PROPs. Building on the establish ed presentation of such structures as algebras for monads on presheaf categories, we describe a characteristic property of the associated monads---the shapeliness of the title---which says that any two operations of the same shape agree. An important part of this work is the study of analytic functors between presheaf categories, which are a common generalisation of Joyals analytic endofunctors on sets and of the parametric right adjoint functors on presheaf categories introduced by Diers and studied by Carboni--Johnstone, Leinster and Weber. Our shapely monads will be found among the analytic endofunctors, and may be characterised as the submonads of a universal analytic monad with exactly one operation of each shape. In fact, shapeliness also gives a way to define the data and axioms of a structure directly from its graphical calculus, by generating a free shapely monad on the basic operations of the calculus. In this paper we do this for some of the examples listed above; in future work, we intend to do so for graphical calculi such as Milners bigraphs, Lafonts interaction nets, or Girards multiplicative proof nets, thereby obtaining canonical notions of denotational model.
166 - Marek Zawadowski 2013
We characterize the category of co-semi-analytic functors and describe an action of semi-analytic functors on co-semi-analytic functors.
Monads can be interpreted as encoding formal expressions, or formal operations in the sense of universal algebra. We give a construction which formalizes the idea of evaluating an expression partially: for example, 2+3 can be obtained as a partial ev aluation of 2+2+1. This construction can be given for any monad, and it is linked to the famous bar construction, of which it gives an operational interpretation: the bar construction induces a simplicial set, and its 1-cells are partial evaluations. We study the properties of partial evaluations for general monads. We prove that whenever the monad is weakly cartesian, partial evaluations can be composed via the usual Kan filler property of simplicial sets, of which we give an interpretation in terms of substitution of terms. In terms of rewritings, partial evaluations give an abstract reduction system which is reflexive, confluent, and transitive whenever the monad is weakly cartesian. For the case of probability monads, partial evaluations correspond to what probabilists call conditional expectation of random variables. This manuscript is part of a work in progress on a general rewriting interpretation of the bar construction.
We give an elementary and direct combinatorial definition of opetopes in terms of trees, well-suited for graphical manipulation and explicit computation. To relate our definition to the classical definition, we recast the Baez-Dolan slice constructio n for operads in terms of polynomial monads: our opetopes appear naturally as types for polynomial monads obtained by iterating the Baez-Dolan construction, starting with the trivial monad. We show that our notion of opetope agrees with Leinsters. Next we observe a suspension operation for opetopes, and define a notion of stable opetopes. Stable opetopes form a least fixpoint for the Baez-Dolan construction. A final section is devoted to example computations, and indicates also how the calculus of opetopes is well-suited for machine implementation.
110 - Richard Garner 2018
We provide new categorical perspectives on Jacobs notion of hypernormalisation of sub-probability distributions. In particular, we show that a suitable general framework for notions of hypernormalisation is that of a symmetric monoidal category endow ed with a linear exponential monad---a notion arising in the categorical semantics of Girards linear logic. We show that Jacobs original notion of hypernormalisation arises in this way from the finitely supported probability measure monad on the category of sets, which can be seen as a linear exponential monad with respect to a monoidal structure on sets arising from a quantum-algebraic object which we term the Giry tricocycloid. We give many other examples of hypernormalisation arising from other linear exponential monads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا