ترغب بنشر مسار تعليمي؟ اضغط هنا

Renewal equations for option pricing

119   0   0.0 ( 0 )
 نشر من قبل Miquel Montero
 تاريخ النشر 2008
  مجال البحث مالية فيزياء
والبحث باللغة English
 تأليف Miquel Montero




اسأل ChatGPT حول البحث

In this paper we will develop a methodology for obtaining pricing expressions for financial instruments whose underlying asset can be described through a simple continuous-time random walk (CTRW) market model. Our approach is very natural to the issue because it is based in the use of renewal equations, and therefore it enhances the potential use of CTRW techniques in finance. We solve these equations for typical contract specifications, in a particular but exemplifying case. We also show how a formal general solution can be found for more exotic derivatives, and we compare prices for alternative models of the underlying. Finally, we recover the celebrated results for the Wiener process under certain limits.



قيم البحث

اقرأ أيضاً

121 - Miquel Montero 2009
Perpetual American options are financial instruments that can be readily exercised and do not mature. In this paper we study in detail the problem of pricing this kind of derivatives, for the most popular flavour, within a framework in which some of the properties |volatility and dividend policy| of the underlying stock can change at a random instant of time, but in such a way that we can forecast their final values. Under this assumption we can model actual market conditions because most relevant facts usually entail sharp predictable consequences. The effect of this potential risk on perpetual American vanilla options is remarkable: the very equation that will determine the fair price depends on the solution to be found. Sound results are found under the optics both of finance and physics. In particular, a parallelism among the overall outcome of this problem and a phase transition is established.
A stochastic model for pure-jump diffusion (the compound renewal process) can be used as a zero-order approximation and as a phenomenological description of tick-by-tick price fluctuations. This leads to an exact and explicit general formula for the martingale price of a European call option. A complete derivation of this result is presented by means of elementary probabilistic tools.
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equati ons, defining the option-pricing wave function in terms of the stock price and time. The model includes two parameters: volatility (playing the role of dispersion frequency coefficient), which can be either fixed or stochastic, and adaptive market potential that depends on the interest rate. The wave function represents quantum probability amplitude, whose absolute square is probability density function. Four types of analytical solutions of the NLS equation are provided in terms of Jacobi elliptic functions, all starting from de Broglies plane-wave packet associated with the free quantum-mechanical particle. The best agreement with the Black-Scholes model shows the adaptive shock-wave NLS-solution, which can be efficiently combined with adaptive solitary-wave NLS-solution. Adjustable weights of the adaptive market-heat potential are estimated using either unsupervised Hebbian learning, or supervised Levenberg-Marquardt algorithm. In the case of stochastic volatility, it is itself represented by the wave function, so we come to the so-called Manakov system of two coupled NLS equations (that admits closed-form solutions), with the common adaptive market potential, which defines a bidirectional spatio-temporal associative memory. Keywords: Black-Scholes option pricing, adaptive nonlinear Schrodinger equation, market heat potential, controlled stochastic volatility, adaptive Manakov system, controlled Brownian behavior
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w elfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.
In this paper we solve the discrete time mean-variance hedging problem when asset returns follow a multivariate autoregressive hidden Markov model. Time dependent volatility and serial dependence are well established properties of financial time seri es and our model covers both. To illustrate the relevance of our proposed methodology, we first compare the proposed model with the well-known hidden Markov model via likelihood ratio tests and a novel goodness-of-fit test on the S&P 500 daily returns. Secondly, we present out-of-sample hedging results on S&P 500 vanilla options as well as a trading strategy based on theoretical prices, which we compare to simpler models including the classical Black-Scholes delta-hedging approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا