ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Domain Measurement of Spontaneous Vibrational Decay of Magnetically Trapped NH

213   0   0.0 ( 0 )
 نشر من قبل Wes Campbell
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The v = 1 -> 0 radiative lifetime of NH (X triplet-Sigma-, v=1,N=0) is determined to be tau_rad,exp. = 37.0 +/- 0.5 stat +2.0 / -0.8 sys miliseconds, corresponding to a transition dipole moment of |mu_10| = 0.0540 + 0.0009 / -0.0018 Debye. To achieve the long observation times necessary for direct time-domain measurement, vibrationally excited NH (X triplet-Sigma-, v=1,N=0) radicals are magnetically trapped using helium buffer-gas loading. Simultaneous trapping and lifetime measurement of both the NH(v=1, N=0) and NH(v=0,N=0) populations allows for accurate extraction of tau_rad,exp. Background helium atoms are present during our measurement of tau_rad,exp., and the rate constant for helium atom induced collisional quenching of NH(v=1,N=0) was determined to be k_q < 3.9 * 10^-15 cm^3/s. This bound on k_q yields the quoted systematic uncertainty on tau_rad,exp. Using an ab initio dipole moment function and an RKR potential, we also determine a theoretical value of 36.99 ms for this lifetime, in agreement with our experimental value. Our results provide an independent determination of tau_rad,10, test molecular theory, and furthermore demonstrate the efficacy of buffer-gas loading and trapping in determining metastable radiative and collisional lifetimes.



قيم البحث

اقرأ أيضاً

129 - P. Cheinet 2005
We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave-packets. The sensitivity function is calculated in the case of a three pulse Mach-Zehnder interf erometer, which is the configuration of the two inertial sensors we are building at BNM-SYRTE. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers, as well as by residual vibrations. We evaluate the performance that could be obtained with state of the art quartz oscillators, as well as the impact of the residual phase noise of the phase-lock loop. Requirements on the level of vibrations is derived from the same formalism.
We describe experiments demonstrating efficient transfer of molecules from a magneto-optical trap (MOT) into a conservative magnetic quadrupole trap. Our scheme begins with a blue-detuned optical molasses to cool SrF molecules to $sim!50$ $mu$K. Next , we optically pump the molecules into a strongly-trapped sublevel. This two-step process reliably transfers $64%$ of the molecules initially trapped in the MOT into the magnetic trap, comparable to similar atomic experiments. Once loaded, the magnetic trap is compressed by increasing the magnetic field gradient. Finally, we demonstrate a magnetic trap lifetime of over $1$ s. This opens a promising new path to the study of ultracold molecular collisions, and potentially the production of quantum-degenerate molecular gases.
We present a measurement of the branching ratios from the 6P3/2 state of BaII into all dipoleallowed decay channels (6S1/2, 5D3/2 and 5D5/2). Measurements were performed on single 138Ba+ ions in a linear Paul trap with a frequency-doubled mode-locked Ti:Sapphire laser resonant with the 6S1/2->6P3/2 transition at 455 nm by detection of electron shelving into the dark 5D5/2 state. By driving a pi Rabi rotation with a single femtosecond pulse, a absolute measurement of the branching ratio to 5D5/2 state was performed. Combined with a measurement of the relative decay rates into 5D3/2 and 5D5/2 states performed with long trains of highly attenuated 455 nm pulses, it allowed the extraction of the absolute ratios of the other two decays. Relative strengths normalized to unity are found to be 0.756+/-0.046, 0.0290+/-0.0015 and 0.215+/-0.0064 for 6S1/2, 5D3/2 and 5D5/2 respectively. This approximately constitutes a threefold improvement over the best previous measurements and is a sufficient level of precision to compare to calculated values for dipole matrix elements.
We report on the Stark deceleration and electrostatic trapping of $^{14}$NH ($a ^1Delta$) radicals. In the trap, the molecules are excited on the spin-forbidden $A ^3Pi leftarrow a ^1Delta$ transition and detected via their subsequent fluorescence to the $X ^3Sigma^-$ ground state. The 1/e trapping time is 1.4 $pm$ 0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the $a ^1Delta, v=0,J=2$ state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step towards accumulation of these radicals in a magnetic trap.
The spontaneous nucleation and dynamics of topological kink defects have been studied in trapped arrays of 41-43 Yb ions. The number of kinks formed as a function of quench rate across the linear-zigzag transition is measured in the under-damped regi me of the inhomogeneous Kibble-Zurek theory. The experimental results agree well with molecular dynamics simulations, which show how losses mask the intrinsic nucleation rate. Simulations indicate that doubling the ion number and optimization of laser cooling can help reduce the effect of losses. A range of kink dynamics is observed including configural change, motion and lifetime, and behavioral sensitivity to ion number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا