ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra X-ray Observations of the 0.6 < z < 1.1 Red-Sequence Cluster Survey Sample

94   0   0.0 ( 0 )
 نشر من قبل Amalia Hicks
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of Chandra observations of 13 optically-selected clusters with 0.6<z< 1.1, discovered via the Red-sequence Cluster Survey (RCS). All but one are detected at S/N>3; though 3 were not observed long enough to support detailed analysis. Surface brightness profiles are fit to beta-models. Integrated spectra are extracted within R(2500), and Tx and Lx information is obtained. We derive gas and total masses within R(2500) and R(500). Cosmologically corrected scaling relations are investigated, and we find the RCS clusters to be consistent with self-similar scaling expectations. However discrepancies exist between the RCS sample and lower-z X-ray selected samples for relationships involving Lx, with the higher-z RCS clusters having lower Lx for a given Tx. In addition, we find that gas mass fractions within R(2500) for the high-z RCS sample are lower than expected by a factor of ~2. This suggests that the central entropy of these high-z objects has been elevated by processes such as pre-heating, mergers, and/or AGN outbursts, that their gas is still infalling, or that they contain comparatively more baryonic matter in the form of stars. Finally, relationships between red-sequence optical richness (Bgc) and X-ray properties are fit to the data. For systems with measured Tx, we find that optical richness correlates with both Tx and mass, having a scatter of ~30% with mass for both X-ray and optically-selected clusters. However we also find that X-ray luminosity is not well correlated with richness, and that several of our sample appear to be significantly X-ray faint.



قيم البحث

اقرأ أيضاً

We have carried out multicolour imaging of a complete sample of radio-loud quasars at 0.6 < z < 1.1 and find groups or clusters of galaxies in the fields of at least 8 and possibly 13 of the 21 sources. There is no evidence for an evolution in the ri chness of the environments of radio-loud quasars from other low-redshift studies to z >~ 0.9. The quasars associated with groups and clusters in our sample do not necessarily reside in the centre of the galaxy distribution which rarely displays a spherical geometry. Clustering is preferentially associated with small or asymmetric steep-spectrum radio sources. The quasars with the largest projected angular size are, in nearly all cases, found in non-clustered environments. Radio-based selection (including source size) of high-redshift groups and clusters can be a very efficient method of detecting rich environments at these redshifts. We find that in optical searches for galaxy overdensities above z ~ 0.6 multiple filters must be used. If the single-filter counting statistics used by groups at lower redshift are applied to our data, uncertainties are too large to make accurate quantifications of cluster richness. This means that genuine clustering of galaxies about quasars will be missed and, in ~10% of cases, putative clusters turn out to be false detections. The statistics are further diluted by the fact that galaxy overdensities are generally not centred on the quasar.
72 - B. J. Maughan 2005
The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters observed with Chandra and/or XMM are used to investigate the evolution of the cluster scaling relations. The observed evolution of the L-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the universe at their redshift of observation. When the systematic effect of assuming isothermality on the derived masses of the high-redshift clusters is taken into account, the high-redshift M-T and Mgas-T relations are also consistent with self-similar evolution. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having formed at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high-redshift (B=3.29+/-0.38) is consistent with the local relation, and significantly steeper then the self-similar prediction of B=2. This suggests that the non-gravitational processes causing the steepening occurred at z>1 or in the early stages of the clusters formation, prior to their observation. The properties of the intra-cluster medium at high-redshift are found to be similar to those in the local universe. The mean surface-brightness profile slope for the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200 are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the sample is 0.28+/-0.16 solar.
127 - O. Johnson , P. Best , D. Zaritsky 2006
We present XMM-Newton observations of three optically-selected z > 0.6 clusters from the ESO Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were ide ntified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and -- unlike other high-redshift, optically-selected clusters -- are consistent with the T - sigma and L_x - sigma relations determined from X-ray selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalog may, like selection by X-ray luminosity, be well-suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by z ~ 0.8.
We present the Red-sequence Cluster Lensing Survey (RCSLenS), an application of the methods developed for the Canada France Hawaii Telescope Lensing Survey (CFHTLenS) to the ~785deg$^2$, multi-band imaging data of the Red-sequence Cluster Survey 2 (R CS2). This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7deg$^2$ and down to a magnitude limit of r~24.5 is 8.1 galaxies per arcmin$^2$ (weighted: 5.5 arcmin$^{-2}$) distributed over 14 patches on the sky. Photometric redshifts based on 4-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg$^2$ We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through CADC at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release.
We observed the nearby, low-density globular cluster M71 (NGC 6838) with the Chandra X-ray Observatory to study its faint X-ray populations. Five X-ray sources were found inside the cluster core radius, including the known eclipsing binary millisecon d pulsar (MSP) PSR J1953+1846A. The X-ray light curve of the source coincident with this MSP shows marginal evidence for periodicity at the binary period of 4.2 h. Its hard X-ray spectrum and luminosity resemble those of other eclipsing binary MSPs in 47 Tuc, suggesting a similar shock origin of the X-ray emission. A further 24 X-ray sources were found within the half-mass radius, reaching to a limiting luminosity of 1.5 10^30 erg/s (0.3-8 keV). From a radial distribution analysis, we find that 18+/-6 of these 29 sources are associated with M71, somewhat more than predicted, and that 11+/-6 are background sources, both galactic and extragalactic. M71 appears to have more X-ray sources between L_X=10^30--10^31 erg/s than expected by extrapolating from other studied clusters using either mass or collision frequency. We explore the spectra and variability of these sources, and describe the results of ground-based optical counterpart searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا