ﻻ يوجد ملخص باللغة العربية
Field programmable gate arrays (FPGAs) provide designers with the ability to quickly create hardware circuits. Increases in FPGA configurable logic capacity and decreasing FPGA costs have enabled designers to more readily incorporate FPGAs in their designs. FPGA vendors have begun providing configurable soft processor cores that can be synthesized onto their FPGA products. While FPGAs with soft processor cores provide designers with increased flexibility, such processors typically have degraded performance and energy consumption compared to hard-core processors. Previously, we proposed warp processing, a technique capable of optimizing a software application by dynamically and transparently re-implementing critical software kernels as custom circuits in on-chip configurable logic. In this paper, we study the potential of a MicroBlaze soft-core based warp processing system to eliminate the performance and energy overhead of a soft-core processor compared to a hard-core processor. We demonstrate that the soft-core based warp processor achieves average speedups of 5.8 and energy reductions of 57% compared to the soft core alone. Our data shows that a soft-core based warp processor yields performance and energy consumption competitive with existing hard-core processors, thus expanding the usefulness of soft processor cores on FPGAs to a broader range of applications.
We present a first of its kind framework which overcomes a major challenge in the design of digital systems that are resilient to reliability failures: achieve desired resilience targets at minimal costs (energy, power, execution time, area) by combi
We present CLEAR (Cross-Layer Exploration for Architecting Resilience), a first of its kind framework which overcomes a major challenge in the design of digital systems that are resilient to reliability failures: achieve desired resilience targets at
Hardware flaws are permanent and potent: hardware cannot be patched once fabricated, and any flaws may undermine any software executing on top. Consequently, verification time dominates implementation time. The gold standard in hardware Design Verifi
In this paper we describe how we applied a BIST-based approach to the test of a logic core to be included in System-on-a-chip (SoC) environments. The approach advantages are the ability to protect the core IP, the simple test interface (thanks also t
In this paper, we present a software compilation approach for microprocessor/FPGA platforms that partitions a software binary onto custom hardware implemented in the FPGA. Our approach imposes less restrictions on software tool flow than previous com