ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of false vacuum bubbles with nonminimal coupling

375   0   0.0 ( 0 )
 نشر من قبل Wonwoo Lee
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of false vacuum bubbles. A nonminimally coupled scalar field gives rise to the effect of negative tension. The mass of a false vacuum bubble from outside observers point of view can be positive, zero, or negative. The interior false vacuum has de Sitter geometry, while the exterior true vacuum background can have geometry depending on the vacuum energy. We show that there exist expanding false vacuum bubbles without the initial singularity in the past.



قيم البحث

اقرأ أيضاً

We have studied the induced one-loop energy-momentum tensor of a massive complex scalar field within the framework of nonperturbative quantum electrodynamics (QED) with a uniform electric field background on the Poincare patch of the two-dimensional de Sitter spacetime ($mathrm{dS_{2}}$). We also consider a direct coupling the scalar field to the Ricci scalar curvature which is parameterized by an arbitrary dimensionless nonminimal coupling constant. We evaluate the trace anomaly of the induced energy-momentum tensor. We show that our results for the induced energy-momentum tensor in the zero electric field case, and the trace anomaly are in agreement with the existing literature. Furthermore, we construct the one-loop effective Lagrangian from the induced energy-momentum tensor.
We study the effect of vortices on the tunneling decay of a symmetry-breaking false vacuum in three spacetime dimensions with gravity. The scenario considered is one in which the initial state, rather than being the homogeneous false vacuum, contains false vortices. The question addressed is whether, and, if so, under which circumstances, the presence of vortices has a significant catalyzing effect on vacuum decay. After studying the existence and properties of vortices, we study their decay rate through quantum tunneling using a variety of techniques. In particular, for so-called thin-wall vortices we devise a one-parameter family of configurations allowing a quantum-mechanical calculation of tunneling. Also for thin-wall vortices, we employ the Israel junction conditions between the interior and exterior spacetimes. Matching these two spacetimes reveals a decay channel which results in an unstable, expanding vortex. We find that the tunneling exponent for vortices, which is the dominant factor in the decay rate, is half that for Coleman-de Luccia bubbles. This implies that vortices are short-lived, making them cosmologically significant even for low vortex densities. In the limit of the vanishing gravitational constant we smoothly recover our earlier results for the decay of the false vortex in a model without gravity.
We consider the Skyrme model modified by the addition of mass terms which explicitly break chiral symmetry and pick out a specific point on the models target space as the unique true vacuum. However, they also allow the possibility of false vacua, lo cal minima of the potential energy. These false vacuum configurations admit metastable skyrmions, which we call false skyrmions. False skyrmions can decay due to quantum tunnelling, consequently causing the decay of the false vacuum. We compute the rate of decay of the false vacuum due to the existence of false skyrmions.
We construct a simple AdS_4 x S^1 flux compactification stabilized by a complex scalar field winding the extra dimension and demonstrate an instability via nucleation of a bubble of nothing. This occurs when the Kaluza -- Klein dimension degenerates to a point, defining the bubble surface. Because the extra dimension is stabilized by a flux, the bubble surface must be charged, in this case under the axionic part of the complex scalar. This smooth geometry can be seen as a de Sitter topological defect with asymptotic behavior identical to the pure compactification. We discuss how a similar construction can be implemented in more general Freund -- Rubin compactifications.
We design and implement a quantum laboratory to experimentally observe and study dynamical processes of quantum field theories. Our approach encodes the field theory as an Ising model, which is then solved by a quantum annealer. As a proof-of-concept , we encode a scalar field theory and measure the probability for it to tunnel from the false to the true vacuum for various tunnelling times, vacuum displacements and potential profiles. The results are in accord with those predicted theoretically, showing that a quantum annealer is a genuine quantum system that can be used as a quantum laboratory. This is the first time it has been possible to experimentally measure instanton processes in a freely chosen quantum field theory. This novel and flexible method to study the dynamics of quantum systems can be applied to any field theory of interest. Experimental measurements of the dynamical behaviour of field theories are independent of theoretical calculations and can be used to infer their properties without being limited by the availability of suitable perturbative or nonperturbative computational methods. In the near future, measurements in such a quantum laboratory could therefore be used to improve theoretical and computational methods conceptually and may enable the measurement and detailed study of previously unobserved quantum phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا