ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum Decay Induced by False Skyrmions

78   0   0.0 ( 0 )
 نشر من قبل M. B. Paranjape
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Skyrme model modified by the addition of mass terms which explicitly break chiral symmetry and pick out a specific point on the models target space as the unique true vacuum. However, they also allow the possibility of false vacua, local minima of the potential energy. These false vacuum configurations admit metastable skyrmions, which we call false skyrmions. False skyrmions can decay due to quantum tunnelling, consequently causing the decay of the false vacuum. We compute the rate of decay of the false vacuum due to the existence of false skyrmions.



قيم البحث

اقرأ أيضاً

We propose a simple non-perturbative formalism for false vacuum decay using functional methods. We introduce the quasi-stationary effective action, a bounce action that non-perturbatively incorporates radiative corrections and is robust to strong cou plings. The quasi-stationary effective action obeys an exact flow equation in a modified functional renormalization group with a motivated regulator functional. We demonstrate the use of this formalism in a simple toy model and compare our result with that obtained in perturbation theory.
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elem entary particles. Due to the astronomical time scales involved, the research has so far focused on theoretical aspects of this decay. The purpose of this Letter is to show that the false vacuum decay is accessible to current optical experiments as quantum analog simulators of spin chains with confinement of the elementary excitations, which mimic the high energy phenomenology but in one spatial dimension. We study the non-equilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable state that arises in the ferromagnetic phase of the model when the symmetry is explicitly broken by a longitudinal field. This state decays through the formation of bubbles of true vacuum. Using iTEBD simulations, we are able to study the real-time evolution in the thermodynamic limit and measure the decay rate of local observables. We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.
The decay rate of a false vacuum is studied in gauge theory, paying particular attention to its gauge invariance. Although the decay rate should not depend on the gauge parameter $xi$ according to the Nielsen identity, the gauge invariance of the res ult of a perturbative calculation has not been clearly shown. We give a prescription to perform a one-loop calculation of the decay rate, with which a manifestly gauge-invariant expression of the decay rate is obtained. We also discuss the renormalization necessary to make the result finite, and show that the decay rate is independent of the gauge parameter even after the renormalization.
133 - Aya Kasai , Yutaka Ookouchi 2015
We investigate dielectric branes in false vacua in Type IIB string theory. The dielectric branes are supported against collapsing by lower energy vacua inside spherical or tube-like branes. We claim that such branes can be seeds for semi-classical (o r quantum mechanical) decay of the false vacua, which makes the life-time of the false vacua shorter. Also, we discuss a topology change of a bubble corresponding to the fuzzy monopole triggered by dissolving fundamental strings.
127 - Todd Fugleberg 1999
In an effective Lagrangian approach to QCD we nonperturbatively calculate an analytic approximation to the decay rate of a false vacuum per unit volume, $Gamma/V$. We do so for both zero and high temperature theories. This result is important for the study of the early universe at around the time of the QCD phase transition. It is also important in order to determine the possibility of observing this false vacuum decay at the Relativistic Heavy Ion Collider (RHIC). Previously described dramatic signatures of the decay of false vacuum bubbles would occur in our case as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا