ﻻ يوجد ملخص باللغة العربية
Thin film metal-insulator-metal junctions are used in a novel approach to investigate the dissipation of potential energy of multiply charged ions impinging on a polycrystalline metal surface. The ion-metal interaction leads to excited electrons and holes within the top layer. A substantial fraction of these charge carriers is transported inwards and can be measured as an internal current in the thin film tunnel junction. In Ag-AlOX-Al junctions, yields of typically 0.1-1 electrons per impinging ion are detected in the bottom Al layer. The separate effects of potential and kinetic energy on the tunneling yield are investigated by varying the charges state of the Ar projectile ions from 2+ to 9+ for kinetic energies in the range from 1 to 12 keV. The tunneling yield is found to scale linearly with the potential energy of the projectile.
Ultrafast dynamics of graphite is investigated by time-resolved photoemission spectroscopy. We observe spectral features of direct photoexcitations, non-thermal electron distributions, and recovery dynamics occurring with two time scales having disti
Graphene is expected to be rather insensitive to ionizing particle radiation. We demonstrate that single layers of exfoliated graphene sustain significant damage from irradiation with slow highly charged ions. We have investigated the ion induced cha
Hot-carrier cooling (HCC) in metal halide perovskites in the high-density regime is significantly slower compared to conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck but the influence of the lattice propertie
The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution
Many of the exotic properties proposed to occur in graphene rely on the possibility of increasing the spin orbit coupling (SOC). By combining analytical and numerical tight binding calculations, in this work we study the SOC induced by heavy adatoms