ﻻ يوجد ملخص باللغة العربية
Graphene is expected to be rather insensitive to ionizing particle radiation. We demonstrate that single layers of exfoliated graphene sustain significant damage from irradiation with slow highly charged ions. We have investigated the ion induced changes of graphene after irradiation with highly charged ions of different charge states (q = 28-42) and kinetic energies E_kin = 150-450 keV. Atomic force microscopy images reveal that the ion induced defects are not topographic in nature but are related to a significant change in friction. To create these defects, a minimum charge state is needed. In addition to this threshold behaviour, the required minimum charge state as well as the defect diameter show a strong dependency on the kinetic energy of the projectiles. From the linear dependency of the defect diameter on the projectile velocity we infer that electronic excitations triggered by the incoming ion in the above-surface phase play a dominant role for this unexpected defect creation in graphene.
The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single
We investigated the specific electronic energy deposition by protons and He ions with keV energies in different transition metal nitrides of technological interest. Data were obtained from two different time-of-flight ion scattering setups and show e
Porous single layer molybdenum disulfide (MoS$_2$) is a promising material for applications such as DNA sequencing and water desalination. In this work, we introduce irradiation with highly charged ions (HCIs) as a new technique to fabricate well-def
We present the first investigation on the effect of highly charged ion bombardment on a manganese arsenide thin film. The MnAs films, 150 nm thick, are irradiated with 90 keV Ne$^{9+}$ ions with a dose varying from $1.6times10^{12}$ to $1.6times10^{1
The linewidths of the electronic bands originating from the electron-phonon coupling in graphene are analyzed based on model tight-binding calculations and experimental angle-resolved photoemission spectroscopy (ARPES) data. Our calculations confirm