ﻻ يوجد ملخص باللغة العربية
We prove that the spaces of C1 symplectomorphisms and of C1 volume-preserving diffeomorphisms of connected manifolds both contain residual subsets of diffeomorphisms whose centralizers are trivial. (Les diffeomorphismes conservatifs C1-generiques ont un centralisateur trivial. Nous montrons que lespace des symplectomorphismes de classe C1 et lespace des diffeomomorphismes de classe C1 preservant une forme volume contiennent tous deux des sous-ensembles residuels de diffeomorphismes dont le centralisateur est trivial.)
Answering a question of Smale, we prove that the space of C1 diffeomorphisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.
In the first part of this text we give a survey of the properties satisfied by the C1-generic conservative diffeomorphisms of compact surfaces. The main result that we will discuss is that a C1-generic conservative diffeomorphism of a connected compa
We prove that for infinite rank-one transformations satisfying a property called partial boundedness, the only commuting transformations are powers of the original transformation. This shows that a large class of infinite measure-preserving rank-one
We study the ergodic theory of non-conservative C^1-generic diffeomorphisms. First, we show that homoclinic classes of arbitrary diffeomorphisms exhibit ergodic measures whose supports coincide with the homoclinic class. Second, we show that generic
Denote by $DC(M)_0$ the identity component of the group of the compactly supported $C^r$ diffeomorphisms of a connected $C^infty$ manifold $M$. We show that if $dim(M)geq2$ and $r eq dim(M)+1$, then any homomorphism from $DC(M)_0$ to ${Diff}^1(R)$ or ${Diff}^1(S^1)$ is trivial.