ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Probabilistic Algorithm for Detecting Community Structure in Social Networks

98   0   0.0 ( 0 )
 نشر من قبل Wei Ren
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel semi-parametric probabilistic model which considers interactions between different communities and can provide more information about the network topology besides correctly detecting communities. By using an additional parameter, our model can not only detect community structure but also detect pattern which is a generalization of common sense network community structure. The prior parameter in our model reveals the characteristics of patterns inside the network. Results on some widely known data sets prove the efficiency of our model.



قيم البحث

اقرأ أيضاً

Core-periphery structure and community structure are two typical meso-scale structures in complex networks. Though the community detection has been extensively investigated from different perspectives, the definition and the detection of core-periphe ry structure have not received much attention. Furthermore, the detection problems of the core-periphery and community structure were separately investigated. In this paper, we develop a unified framework to simultaneously detect core-periphery structure and community structure in complex networks. Moreover, there are several extra advantages of our algorithm: our method can detect not only single but also multiple pairs of core-periphery structures; the overlapping nodes belonging to different communities can be identified; different scales of core-periphery structures can be detected by adjusting the size of core. The good performance of the method has been validated on synthetic and real complex networks. So we provide a basic framework to detect the two typical meso-scale structures: core-periphery structure and community structure.
136 - Zhen Su , Wei Wang , Lixiang Li 2018
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of communit y networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially-adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this c ommunity structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
Based on signaling process on complex networks, a method for identification community structure is proposed. For a network with $n$ nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the ini tial signal source once to inspire the whole network by exciting its neighbors and then the source node is endowed a $n$d vector which recording the effects of signaling process. So by this process, the topological relationship of nodes on networks could be transferred into the geometrical structure of vectors in $n$d Euclidian space. Then the best partition of groups is determined by $F$-statistic and the final community structure is given by Fuzzy $C$-means clustering method (FCM). This method can detect community structure both in unweighted and weighted networks without any extra parameters. It has been applied to ad hoc networks and some real networks including Zachary Karate Club network and football team network. The results are compared with that of other approaches and the evidence indicates that the algorithm based on signaling process is effective.
The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstan ding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا