ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach

207   0   0.0 ( 0 )
 نشر من قبل Laetitia Gauvin
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule.



قيم البحث

اقرأ أيضاً

Core-periphery structure and community structure are two typical meso-scale structures in complex networks. Though the community detection has been extensively investigated from different perspectives, the definition and the detection of core-periphe ry structure have not received much attention. Furthermore, the detection problems of the core-periphery and community structure were separately investigated. In this paper, we develop a unified framework to simultaneously detect core-periphery structure and community structure in complex networks. Moreover, there are several extra advantages of our algorithm: our method can detect not only single but also multiple pairs of core-periphery structures; the overlapping nodes belonging to different communities can be identified; different scales of core-periphery structures can be detected by adjusting the size of core. The good performance of the method has been validated on synthetic and real complex networks. So we provide a basic framework to detect the two typical meso-scale structures: core-periphery structure and community structure.
The concept of temporal networks provides a framework to understand how the interaction between system components changes over time. In empirical communication data, we often detect non-Poissonian, so-called bursty behavior in the activity of nodes a s well as in the interaction between nodes. However, such reconciliation between node burstiness and link burstiness cannot be explained if the interaction processes on different links are independent of each other. This is because the activity of a node is the superposition of the interaction processes on the links incident to the node and the superposition of independent bursty point processes is not bursty in general. Here we introduce a temporal network model based on bursty node activation and show that it leads to heavy-tailed inter-event time distributions for both node dynamics and link dynamics. Our analysis indicates that activation processes intrinsic to nodes give rise to dynamical correlations across links. Our framework offers a way to model competition and correlation between links, which is key to understanding dynamical processes in various systems.
Most previous studies of epidemic dynamics on complex networks suppose that the disease will eventually stabilize at either a disease-free state or an endemic one. In reality, however, some epidemics always exhibit sporadic and recurrent behaviour in one region because of the invasion from an endemic population elsewhere. In this paper we address this issue and study a susceptible-infected-susceptible epidemiological model on a network consisting of two communities, where the disease is endemic in one community but alternates between outbreaks and extinctions in the other. We provide a detailed characterization of the temporal dynamics of epidemic patterns in the latter community. In particular, we investigate the time duration of both outbreak and extinction, and the time interval between two consecutive inter-community infections, as well as their frequency distributions. Based on the mean-field theory, we theoretically analyze these three timescales and their dependence on the average node degree of each community, the transmission parameters, and the number of intercommunity links, which are in good agreement with simulations, except when the probability of overlaps between successive outbreaks is too large. These findings aid us in better understanding the bursty nature of disease spreading in a local community, and thereby suggesting effective time-dependent control strategies.
Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this c ommunity structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
Networks are a convenient way to represent complex systems of interacting entities. Many networks contain communities of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the d etection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset correlation networks. We first argue that the use of the modularity quality function---which is defined by comparing edge weights in an observed network to expected edge weights in a null network---is application-dependent. We differentiate between null networks and null models in our discussion of modularity maximization, and we highlight that the same null network can correspond to different null models. We then investigate a multilayer modularity-maximization problem to identify communities in temporal networks. Our multilayer analysis only depends on the form of the maximization problem and not on the specific quality function that one chooses. We introduce a diagnostic to measure emph{persistence} of community structure in a multilayer network partition. We prove several results that describe how the multilayer maximization problem measures a trade-off between static community structure within layers and larger values of persistence across layers. We also discuss some computational issues that the popular Louvain heuristic faces with temporal multilayer networks and suggest ways to mitigate them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا