ﻻ يوجد ملخص باللغة العربية
In braneworld models coming from string theory one generally encounters massless scalar degrees of freedom -moduli- parameterizing the volume of small compact extra-dimensions. Here we discuss the effects of such moduli on Newtons law for a fairly general 5-D supersymmetric braneworld scenario with a bulk scalar field $phi$. We show that the Newtonian potential describing the gravitational interaction between two bodies localized on the visible brane picks up a non-trivial contribution at short distances that depends on the shape of the superpotential $W(phi)$ of the theory. In particular, we compute this contribution for dilatonic braneworld scenarios $W(phi) = e^{alpha phi}$ (where $alpha$ is a constant) and discuss the particular case of 5-D Heterotic M-theory.
We study the propagation of gravitons within 5-D supersymmetric braneworld models with a bulk scalar field. The setup considered here consists of a 5-D bulk spacetime bounded by two 4-D branes localized at the fixed points of an $S^1/Z_2$ orbifold. T
Recent cosmological data for very large distances challenge the validity of the standard cosmological model. Motivated by the observed spatial flatness the accelerating expansion and the various anisotropies with preferred axes in the universe we exa
We present a new approach to quantum gravity starting from Feynmans formulation for the simplest example, that of a scalar field as the representative matter. We show that we extend his treatment to a calculable framework using resummation techniques
This talk provides a limited review of SUSY scenarios with the focus on the way electroweak symmetry breaking is achieved and understood under different assumptions. Various aspects of naturalness and their implications are discussed and compared.
Galactic rotation curves and lack of direct observations of Dark Matter may indicate that General Relativity is not valid (on galactic scale) and should be replaced with another theory. There is the only variant of Absolute Parallelism which solution