ترغب بنشر مسار تعليمي؟ اضغط هنا

The quantum-classical crossover of a field mode

296   0   0.0 ( 0 )
 نشر من قبل Mark Everitt
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the quantum-classical crossover in the behaviour of a quantum field mode. The quantum behaviour of a two-state system - a qubit - coupled to the field is used as a probe. Collapse and revival of the qubit inversion form the signature for quantum behaviour of the field and continuous Rabi oscillations form the signature for classical behaviour of the field. We demonstrate both limits in a single model for the full coupled system, for states with the same average field strength, and so for qubits with the same Rabi frequency.



قيم البحث

اقرأ أيضاً

We study the quantum and classical evolution of a system of three harmonic modes interacting via a trilinear Hamiltonian. With the modes prepared in thermal states of different temperatures, this model describes the working principle of an absorption refrigerator that transfers energy from a cold to a hot environment at the expense of free energy provided by a high-temperature work reservoir. Inspired by a recent experimental realization with trapped ions, we elucidate key features of the coupling Hamiltonian that are relevant for the refrigerator performance. The coherent system dynamics exhibits rapid effective equilibration of the mode energies and correlations, as well as a transient enhancement of the cooling performance at short times. We find that these features can be fully reproduced in a classical framework.
We translate the quantum teleportation protocol into a sequence of coherent operations involving three degrees of freedom of a classical laser beam. The protocol, which we demonstrate experimentally, transfers the polarisation state of the input beam to the transverse mode of the output beam. The role of quantum entanglement is played by a non-separable mode describing the path and transverse degrees of freedom. Our protocol illustrates the possibility of new optical applications based on this intriguing classical analogue of quantum entanglement.
356 - C. M. Quintana , Yu Chen , D. Sank 2016
By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around $2k_BT/h approx 1,rm{GHz}$, allowing for the observation of a class ical-quantum crossover. Below the crossover point, the symmetric noise component follows a $1/f$ power law that matches the magnitude of the $1/f$ noise near $1,{rm{Hz}}$. The antisymmetric component displays a 1/T dependence below $100,rm{mK}$, providing dynamical evidence for a paramagnetic environment. Extrapolating the two-sided spectrum predicts the linewidth and reorganization energy of incoherent resonant tunneling between flux qubit wells.
In the field of light-matter interactions, it is often assumed that a classical light field that interacts with a quantum particle remains almost unchanged and thus contains nearly no information about the manipulated particles. To investigate the va lidity of this assumption, we develop and theoretically analyze a simple Gedankenexperiment which involves the interaction of a coherent state with a quantum particle in an optical cavity. We quantify the resulting alteration of the light field by measuring the fidelity of its initial and equilibrium states. Using Bayesian inference, we demonstrate the information transfer through photon measurements. In addition, we employ the concepts of quantum entropy and mutual information to quantify the entropy transfer from the particle to the light field. In the weak coupling limit, we validate the usually assumed negligible alteration of the light field and entropy transfer. In the strong coupling limit, however, we observe that the information of the initial particle state can be fully encoded in the light field, even for large photon numbers. Nevertheless, we show that spontaneous emission is a sufficient mechanism for removing the entropy initially stored in the particle. Our analysis provides a deeper understanding of the entropy exchange between quantum matter and classical light.
This paper describes a novel approach to emulate a universal quantum computer with a wholly classical system, one that uses a signal of bounded duration and amplitude to represent an arbitrary quantum state. The signal may be of any modality (e.g. ac oustic, electromagnetic, etc.) but this paper will focus on electronic signals. Individual qubits are represented by in-phase and quadrature sinusoidal signals, while unitary gate operations are performed using simple analog electronic circuit devices. In this manner, the Hilbert space structure of a multi-qubit quantum state, as well as a universal set of gate operations, may be fully emulated classically. Results from a programmable prototype system are presented and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا