ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure induced variation of the ground state of CeAl3

83   0   0.0 ( 0 )
 نشر من قبل Matthias Weller
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pressure-induced variations of $^{27}$Al NMR spectra of CeAl$_3$ indicate significant changes in the ground-state characteristics of this prototypical heavy-electron compound. Previously reported magnetic and electronic inhomogeneities at ambient pressure and very low temperatures are removed with external pressures exceeding 1.2 kbar. The spectra and results of corresponding measurements of the NMR spin-lattice relaxation rates indicate a pressure-induced emergence of a simple paramagnetic state involving electrons with moderately enhanced masses and no magnetic order above 65 mK.



قيم البحث

اقرأ أيضاً

135 - Aline Y. Ramos 2011
Using X-ray absorption spectroscopy (XAS), we studied the local structure in LaMnO3 under applied pressure across and well above the insulator to metal (IM) transition. A hysteretic behavior points to the coexistence of two phases within a large pres sure range (7 to 25 GPa). The ambient phase with highly Jahn-Teller (JT) distorted MnO6 octahedra is progressively substituted by a new phase with less-distorted JT MnO6 units. The electronic delocalization leading to the IM transition is finger-printed from the pre-edge XAS structure around 30 GPa. We observed that the phase transition takes place without any significant reduction of the JT distortion. This entails band-overlap as the driving mechanism of the IM transition.
The electronic ground state in many iridate materials is described by a complex wave-function in which spin and orbital angular momenta are entangled due to relativistic spin-orbit coupling (SOC). Such a localized electronic state carries an effectiv e total angular momentum of $J_{eff}=1/2$. In materials with an edge-sharing octahedral crystal structure, such as the honeycomb iridates Li2IrO3 and Na2IrO3, these $J_{eff}=1/2$ moments are expected to be coupled through a special bond-dependent magnetic interaction, which is a necessary condition for the realization of a Kitaev quantum spin liquid. However, this relativistic electron picture is challenged by an alternate description, in which itinerant electrons are confined to a benzene-like hexagon, keeping the system insulating despite the delocalized nature of the electrons. In this quasi-molecular orbital (QMO) picture, the honeycomb iridates are an unlikely choice for a Kitaev spin liquid. Here we show that the honeycomb iridate Li2IrO3 is best described by a $J_{eff}=1/2$ state at ambient pressure, but crosses over into a QMO state under the application of small (~ 0.1 GPa) hydrostatic pressure. This result illustrates that the physics of iridates is extremely rich due to a delicate balance between electronic bandwidth, spin-orbit coupling, crystal field, and electron correlation.
Measurements of the specific heat of antiferromagnetic CeRhIn5, to 21 kbar, and for 21 kbar to 70 kOe, show a discontinuous change from an antiferromagnetic ground state below 15 kbar to a superconducting ground state above, and suggest that it is ac companied by a weak thermodynamic first-order transition. Bulk superconductivity appears, apparently with d-wave electron pairing, at the critical pressure, 15 kbar; with further increase in pressure a residual temperature-proportional term in the specific heat disappears.
The perovskite antiferromagnetic ($T_{rm N}$ $sim$ 220 K) insulator EuNiO$_3$ undergoes at ambient pressure a metal-to-insulator transition at $T_{rm MI}$ = 460 K which is associated with a simultaneous orthorhombic-to-monoclinic distortion, leading to charge disproportionation. We have investigated the change of the structural and magnetic properties of EuNiO$_3$ with pressure (up to $sim$ 20 GPa) across its quantum critical point (QCP) using low-temperature synchrotron angle-resolved x-ray diffraction and $^{151}$Eu nuclear forward scattering of synchrotron radiation, respectively. With increasing pressure we find that after a small increase of $T_{rm N}$ ($p$ $leq$ 2 GPa) and the induced magnetic hyperfine field $B_{rm hf}$ at the $^{151}$Eu nucleus ($p$ $leq$ 9.7 GPa), both $T_{rm N}$ and $B_{rm hf}$ are strongly reduced and finally disappear at $p_{rm c}$ $cong$ 10.5 GPa, indicating a magnetic QCP at $p_{rm c}$. The analysis of the structural parameters up to 10.5 GPa reveals no change of the lattice symmetry within the experimental resolution. Since the pressure-induced insulator-to-metal transition occurs at $p_{rm IM}$ $cong$ 6 GPa, this result implies the existence of an antiferromagnetic metallic state between 6 and 10.5 GPa. We further show from the analysis of the reported high pressure electrical resistance data on EuNiO$_3$ at low-temperatures that in the vicinity of the QCP the system behaves as non-Fermi-liquid, with the resistance changing as $T^{rm n}$, with n=1.6, whereas it becomes a normal Fermi-liquid, n = 2, for pressures above $sim$15 GPa. On the basis of the obtained data a magnetic phase diagram in the ($p$, $T$) space is suggested.
Investigation of elementary excitations has advanced our understanding of many-body physics governing most physical properties of matter. Recently spin-orbit excitons have drawn much attention, whose condensates near phase transitions exhibit Higgs m ode oscillations, a long-sought physical phenomenon [Nat. Phys. {bf 13}, 633 (2017)]. These critical transition points resulting from competing spin-orbit coupling (SOC), local crystalline symmetry and exchange interactions, are not obvious in Iridium based materials, where SOC prevails in general. Here, we present results of resonant inelastic x-ray scattering on a spin-orbital liquid Ba$_3$ZnIr$_2$O$_9$ and three other 6H-hexagonal perovskite iridates which show magnetism, contrary to non-magnetic singlet ground state expected due to strong SOC. Our results show that substantial hopping between closely placed Ir$^{5+}$ ions within Ir$_2$O$_9$ dimers in these 6H-iridates, modifies spin-orbit coupled states and reduces spin-orbit excitation energies. Here, we are forced to use at least a two-site model, to match the excitation spectrum going in line with the strong intra-dimer hopping. Apart from SOC, low energy physics of iridates is thus critically dependent on hopping, and may not be ignored even for systems having moderate hopping, where the excitation spectra can be explained using an atomic model. SOC which is generally found to be 0.4-0.5~eV in iridates, is scaled in effect down to $sim$0.26~eV for the 6H-systems, sustaining the hope to achieve quantum criticality by tuning Ir-Ir separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا