ﻻ يوجد ملخص باللغة العربية
It has previously been shown theoretically that the exchange of linear momentum between the light field in an optical cavity and a vibrating end mirror can entangle the electromagnetic field with the vibrational motion of that mirror. In this paper we consider the rotational analog of this situation and show that radiation torque can similarly entangle a Laguerre-Gaussian cavity mode with a rotating end mirror. We examine the mirror-field entanglement as a function of ambient temperature, radiation detuning and orbital angular momentum carried by the cavity mode.
Transfer mechanism of orbital angular moment(OAM) of light to trapped ground-state atoms under paraxial approximation is well known. Here we show how optical OAM of a Laguerre-Gaussian(LG) beam under paraxial approximation can be transferred to trapp
Photons propagating in Laguerre-Gaussian modes have characteristic orbital angular momentums, which are fundamental optical degrees of freedom. The orbital angular momentum of light has potential application in high capacity optical communication and
A Gaussian degree of entanglement for a symmetric two-mode Gaussian state can be defined as its distance to the set of all separable two-mode Gaussian states. The principal property that enables us to evaluate both Bures distance and relative entropy
The transverse structure of light is recognized as a resource that can be used to encode information onto photons and has been shown to be useful to enhance communication capacity as well as resolve point sources in superresolution imaging. The Lague
We propose a scheme for the realization of a hybrid, strongly quantum-correlated system formed of an atomic ensemble surrounded by a high-finesse optical cavity with a vibrating mirror. We show that the steady state of the system shows tripartite and