ترغب بنشر مسار تعليمي؟ اضغط هنا

The SINFONI MgII Program for Line Emitters (SIMPLE): Discovering starbursts near QSO sight-lines

113   0   0.0 ( 0 )
 نشر من قبل N. Bouche
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nicolas Bouche




اسأل ChatGPT حول البحث

Low-ionization transitions such as the MgII 2796/2803 doublet trace cold gas in the vicinity of galaxies. It is not clear whether this gas is part of the interstellar medium of large proto-disks, part of dwarfs, or part of entrained material in supernovae-driven outflows. Studies based on MgII statistics, e.g. stacked images and clustering analysis, have invoked starburst-driven outflows where MgII absorbers are tracing the denser and colder gas of the outflow. A consequence of the outflow scenario is that the strongest absorbers ought to be associated with starbursts. We use the near-IR integral field spectrograph SINFONI to test whether starbursts are found around z~1 MgII absorbers. For 67% (14 out of 21) of the absorbers with rest-frame equivalent width larger than 2 AA, we do detect Ha in emission within 200 km/s of the predicted wavelength based on the MgII redshift. The star-formation rate (SFR) inferred from Halpha ranges from 1 to 20 Msun/yr, i.e. showing a level of star-formation larger than in M82 by a factor of >4 on average. Our flux limit (3-sigma) corresponds to a SFR of 0.5 Msun/yr. We find evidence (at >95% confidence) for a correlation between SFR and equivalent width, indicating a physical connection between starburst phenomena and gas seen in absorption. In the cases where we can extract the velocity field, the host-galaxies reside in halos with mean mass <log M_h>=11.2 in good agreement with clustering measurements.



قيم البحث

اقرأ أيضاً

134 - Ilane Schroetter 2015
The physical properties of galactic winds are of paramount importance for our understanding of galaxy formation. Fortunately, they can be constrained using background quasars passing near star-forming galaxies (SFGs). From the 14 quasar$-$galaxy pair s in our VLT/SINFONI Mgii Program for Line Emitters (SIMPLE) sample, we reobserved the 10 brightest galaxies in H$_{alpha}$ with the VLT/SINFONI with 0.7 seeing and the corresponding quasar with the VLT/UVES spectrograph. Applying geometrical arguments to these ten pairs, we find that four are likely probing galactic outflows, three are likely probing extended gaseous disks, and the remaining three are not classifiable because they are viewed face-on. In this paper we present a detailed comparison between the line-of-sight kinematics and the host galaxy emission kinematics for the pairs suitable for wind studies. We find that the kinematic profile shapes (asymmetries) can be well reproduced by a purely geometrical wind model with a constant wind speed, except for one pair (towards J2357$-$2736) that has the smallest impact parameter b = 6 kpc and requires an accelerated wind flow. Globally, the outflow speeds are $sim$ 100 km/s and the mass ejection rates (or $dot M _{rm out}$) in the gas traced by the low-ionization species are similar to the star formation rate (SFR), meaning that the mass loading factor, $eta$ = $dot M _{rm out}$/SFR, is $sim$1.0. The outflow speeds are also smaller than the local escape velocity, which implies that the outflows do not escape the galaxy halo and are likely to fall back into the interstellar medium.
Prochter et al. 2006 recently found that the number density of strong intervening 0.5<z<2 MgII absorbers detected in gamma-ray burst (GRB) afterglow spectra is nearly 4 times larger than in QSO spectra. We have conducted a similar study using CIV abs orbers. Our CIV sample, consisting of a total of 20 systems, is drawn from 3 high resolution and high to moderate S/N VLT/UVES spectra of 3 long-duration GRB afterglows, covering the redshift interval 1.6< z<3.1. The column density distribution and number density of this sample do not show any statistical difference with the same quantities measured in QSO spectra. We discuss several possibilities for the discrepancy between CIV and MgII absorbers and conclude that a higher dust extinction in the MgII QSO samples studied up to now would give the most straightforward solution. However, this effect is only important for the strong MgII absorbers. Regardless of the reasons for this discrepancy, this result confirms once more that GRBs can be used to detect a side of the universe that was unknown before, not necessarily connected with GRBs themselves, providing an alternative and fundamental investigative tool of the cosmic evolution of the universe.
169 - Vivienne Wild 2008
Using data from the Sloan Digital Sky Survey data release 3 (SDSS DR3) we investigate how narrow (<700km/s) CIV and MgII quasar absorption line systems are distributed around quasars. The CIV absorbers lie in the redshift range 1.6 < z < 4 and the Mg II absorbers in the range 0.4<z<2.2. By correlating absorbers with quasars on different but neighbouring lines-of-sight, we measure the clustering of absorbers around quasars on comoving scales between 4 and 30Mpc. The observed comoving correlation lengths are r_o~5h^-1Mpc, similar to those observed for bright galaxies at these redshifts. Comparing with correlations between absorbers and the quasars in whose spectra they are identified then implies: (i) that quasars destroy absorbers to comoving distances of ~300kpc (CIV) and ~800kpc (MgII) along their lines-of-sight; (ii) that >40% of CIV absorbers within 3,000km/s of the QSO are not a result of large-scale clustering but rather are directly associated with the quasar itself; (iii) that this intrinsic absorber population extends to outflow velocities of order 12,000km/s; (iv) that this outflow component is present in both radio-loud and radio-quiet quasars; and (v) that a small high-velocity outflow component is observed in the MgII population, but any further intrinsic absorber component is undetectable in our clustering analysis. We also find an indication that absorption systems within 3,000km/s are more abundant for radio-loud than for radio-quiet quasars. This suggests either that radio-loud objects live in more massive halos, or that their radio activity generates an additional low-velocity outflow, or both.
We analyse the properties of MgII absorption systems detected along the sightlines toward GRBs using a sample of 10 GRB afterglow spectra obtained with VLT-UVES over the past six years. The S/N ratio is sufficiently high that we can extend previous s tudies to smaller equivalent widths (typically Wr>0.3A). Over a pathlength of Delta(z)~14 the number of weak absorbers detected is similar along GRB and QSO lines of sight, while the number of strong systems is larger along GRB lines of sight with a 2-sigma significance. Using intermediate and low resolution observations reported in the literature, we increase the absorption length for strong systems to Delta(z)=31.5 (about twice the path length of previous studies) and find that the number density of strong MgII systems is a factor of 2.1+/-0.6 higher (about 3-sigma significance) toward GRBs as compared to QSOs, about twice smaller however than previously reported. We divide the sample in three redshift bins and we find that the number density of strong MgII is larger in the low redshift bins. We investigate in detail the properties of strong MgII systems observed with UVES. Both the estimated dust extinction in strong GRB MgII systems and the equivalent width distribution are consistent with what is observed for standard QSO systems. We find also that the number density of (sub)-DLAs per unit redshift in the UVES sample is probably twice larger than what is expected from QSO sightlines which confirms the peculiarity of GRB lines of sight. These results indicate that neither a dust extinction bias nor different beam sizes of the sources are viable explanations for the excess. It is still possible that the current sample of GRB lines of sight is biased by a subtle gravitational lensing effect. More data and larger samples are needed to test this hypothesis. (abridged)
To establish the connection between galaxies and UV-detected absorption systems in the local universe, a deep ($gleq20$) and wide ($sim20^{prime}$ radius) galaxy redshift survey is presented around 47 sight lines to UV-bright AGN observed by the Cosm ic Origins Spectrograph (COS). Specific COS science team papers have used this survey to connect absorbers to galaxies, groups of galaxies, and large-scale structures, including voids. Here we present the technical details of the survey and the basic measurements required for its use, including redshifts for individual galaxies and uncertainties determined collectively by spectral class (emission-line, absorption-line, and composite spectra) and completeness for each sight line as a function of impact parameter and magnitude. For most of these sight lines the design criteria of $>90$% completeness over a $>1$ Mpc region down to $lesssim0.1,L^*$ luminosities at $zleq0.1$ allows a plausible association between low-$z$ absorbers and individual galaxies. Ly$alpha$ covering fractions are computed to approximate the star-forming and passive galaxy populations using the spectral classes above. In agreement with previous results, the covering fraction of star-forming galaxies with $Lgeq0.3,L^*$ is consistent with unity inside one virial radius and declines slowly to $>50$% at 4 virial radii. On the other hand, passive galaxies have lower covering fractions ($sim60$%) and a shallower decline with impact parameter, suggesting that their gaseous halos are patchy but have a larger scale-length than star-forming galaxies. All spectra obtained by this project are made available electronically for individual measurement and use.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا