ﻻ يوجد ملخص باللغة العربية
Prochter et al. 2006 recently found that the number density of strong intervening 0.5<z<2 MgII absorbers detected in gamma-ray burst (GRB) afterglow spectra is nearly 4 times larger than in QSO spectra. We have conducted a similar study using CIV absorbers. Our CIV sample, consisting of a total of 20 systems, is drawn from 3 high resolution and high to moderate S/N VLT/UVES spectra of 3 long-duration GRB afterglows, covering the redshift interval 1.6< z<3.1. The column density distribution and number density of this sample do not show any statistical difference with the same quantities measured in QSO spectra. We discuss several possibilities for the discrepancy between CIV and MgII absorbers and conclude that a higher dust extinction in the MgII QSO samples studied up to now would give the most straightforward solution. However, this effect is only important for the strong MgII absorbers. Regardless of the reasons for this discrepancy, this result confirms once more that GRBs can be used to detect a side of the universe that was unknown before, not necessarily connected with GRBs themselves, providing an alternative and fundamental investigative tool of the cosmic evolution of the universe.
Low-ionization transitions such as the MgII 2796/2803 doublet trace cold gas in the vicinity of galaxies. It is not clear whether this gas is part of the interstellar medium of large proto-disks, part of dwarfs, or part of entrained material in super
We analyse the properties of MgII absorption systems detected along the sightlines toward GRBs using a sample of 10 GRB afterglow spectra obtained with VLT-UVES over the past six years. The S/N ratio is sufficiently high that we can extend previous s
In order to investigate the origin of the excess of strong MgII systems towards GRB afterglows as compared to QSO sightlines, we have measured the incidence of MgII absorbers towards a third class of objects: the Blazars. This class includes the BL L
The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2 of sky to m(R)~19, resulted in the discovery of thirty-one quasars with z > 4. High signal-to-noise optical spectrophotometry at 5A resolution has been obtained for the twenty-ei
We performed multi-band deep imaging of the field around GRB 050730 to identify the host galaxies of intervening absorbers, which consist of a damped Ly{alpha} absorption (DLA) system at zabs=3.564, a sub-DLA system at zabs=3.022, and strong MgII abs