ﻻ يوجد ملخص باللغة العربية
We show that if a numerical method is posed as a sequence of operators acting on data and depending on a parameter, typically a measure of the size of discretization, then consistency, convergence and stability can be related by a Lax-Richtmyer type equivalence theorem -- a consistent method is convergent if and only if it is stable. We define consistency as convergence on a dense subspace and stability as discrete well-posedness. In some applications convergence is harder to prove than consistency or stability since convergence requires knowledge of the solution. An equivalence theorem can be useful in such settings. We give concrete instances of equivalence theorems for polynomial interpolation, numerical differentiation, numerical integration using quadrature rules and Monte Carlo integration.
The goal of this paper is twofold. First, we present a unified way of formulating numerical integration problems from both approximation theory and discrepancy theory. Second, we show how techniques, developed in approximation theory, work in proving
The numerical integration of an analytical function $f(x)$ using a finite set of equidistant points can be performed by quadrature formulas like the Newton-Cotes. Unlike Gaussian quadrature formulas however, higher-order Newton-Cotes formulas are not
For linear elastic problems, it is well-known that mesh generation dominates the total analysis time. Different types of methods have been proposed to directly or indirectly alleviate this burden associated with mesh generation. We review in this pap
This paper describes the analysis of Lagrange interpolation errors on tetrahedrons. In many textbooks, the error analysis of Lagrange interpolation is conducted under geometric assumptions such as shape regularity or the (generalized) maximum angle c
We present algebraic multilevel iteration (AMLI) methods for isogeometric discretization of scalar second order elliptic problems. The construction of coarse grid operators and hierarchical complementary operators are given. Moreover, for a uniform m